In the present paper, the Dirichlet-to-Neumann map method is employed to compute the band structures of two-dimensional phononic crystals with smoothly sliding connection conditions between the matrix and the scatterers, which are composed of square or triangular lattices of circular solid cylinders in a solid matrix. The solid/solid systems of various material parameters with sliding interface conditions are considered. The influence of sliding interface conditions on the band structures is analyzed and discussed. The results show that the smoothly sliding interface condition has significant effect on the band structure.

References

1.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
, pp.
2022
2025
.10.1103/PhysRevLett.71.2022
2.
Goffaux
,
C.
, and
Vigneron
,
J. P.
,
2001
, “
Theoretical Study of a Tunable Phononic Band Gap System
,”
Phys. Rev. B
,
64
, p.
075118
.10.1103/PhysRevB.64.075118
3.
Bian
,
Z. G.
,
Peng
,
W.
, and
Song
,
J. Z.
,
2013
, “
Thermal Tuning of Band Structures in a One-Dimensional Phononic Crystal
,”
ASME J. Appl. Mech.
,
81
, p.
041008
.10.1115/1.4025058
4.
Liu
,
Z.
,
Chan
,
C. T.
,
Sheng
,
P.
,
Goertzen
,
A. L.
, and
Page
,
J. H.
,
2000
, “
Elastic Wave Scattering by Periodic Structures of Spherical Objects: Theory and Experiment
,”
Phys. Rev. B
,
62
, pp.
2446
2457
.10.1103/PhysRevB.62.2446
5.
Montero de Espinosa
,
F. R.
,
Jimenez
,
E.
, and
Torres
,
M.
,
1998
, “
Ultrasonic Band Gap in a Periodic Two-Dimensional Composite
,”
Phys. Rev. Lett.
,
80
, pp.
1208
1211
.10.1103/PhysRevLett.80.1208
6.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
, pp.
1734
1736
.10.1126/science.289.5485.1734
7.
Goffaux
,
C.
, and
Sanchez-Dehesa
,
J.
,
2003
, “
Two-Dimensional Phononic Crystals Studied Using a Variational Method: Application to Lattices of Locally Resonant Materials
,”
Phys. Rev. B
,
67
, p.
144301
.10.1103/PhysRevB.67.144301
8.
Liu
,
Z.
,
Chan
,
C. T.
, and
Cheng
,
P.
,
2002
, “
Three-Component Elastic Wave Band-Gap Material
,”
Phys. Rev. B
,
65
, p.
165116
.10.1103/PhysRevB.65.165116
9.
Cervera
,
F.
,
Sanchis
,
L.
,
Sanchez-Perez
,
J. V.
,
Martinez-Sala
,
R.
,
Rubio
,
C.
,
Meseguer
,
F.
,
Lopez
,
C.
,
Caballero
,
D.
, and
Sanchez-Dehesa
,
J.
,
2001
, “
Refractive Acoustic Devices for Airborne Sound
,”
Phys. Rev. Lett.
,
88
, p.
023902
.10.1103/PhysRevLett.88.023902
10.
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Frantziskonis
,
G.
,
Chenni
,
B.
,
Djafari-Rouhani
,
B.
,
Dobrzynski
,
L.
, and
Prevost
,
D.
,
2001
, “
Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Solid Phononic Crystals
,”
Phys. Rev. Lett.
,
86
, pp.
3012
3015
.10.1103/PhysRevLett.86.3012
11.
Torres
,
M.
,
Montero de Espinosa
,
F. R.
, and
Aragon
,
J. L.
,
2002
, “
Ultrasonic Wedges for Elastic Wave Bending and Splitting Without Requiring a Full Band Gap
,”
Phys. Rev. Lett.
,
86
, pp.
4282
4285
.10.1103/PhysRevLett.86.4282
12.
Wu
,
T. T.
,
Huang
,
Z. G.
, and
Lin
,
S.
,
2004
, “
Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystal Consisting of Materials With General Anisotropy
,”
Phys. Rev. B
,
69
, p.
094301
.10.1103/PhysRevB.69.094301
13.
Tanaka
,
Y.
,
Tomoyasu
,
Y.
, and
Tamura
,
S.
,
2000
, “
Band Structure of Acoustic Waves in Phononic Lattices: Two-Dimensional Composites With Large Acoustic Mismatch
,”
Phys. Rev. B
,
62
, pp.
7387
7392
.10.1103/PhysRevB.62.7387
14.
Sigalas
,
M. M.
, and
Gálvez
,
N.
,
2000
, “
Importance of Coupling Between Longitudinal and Transverse Components for the Creation of Acoustic Band Gaps: The Aluminum in Mercury Case
,”
Appl. Phys. Lett.
,
76
, pp.
2307
2309
.10.1063/1.126328
15.
Yan
,
Z. Z.
,
Wang
,
Y. S.
, and
Zhang
,
Ch.
,
2008
, “
A Method Based on Wavelets for Band Structure Analysis of Phononic Crystals
,”
Comput. Model Eng. Sci.
,
38
, pp.
59
87
10.3970/cmes.2008.038.059.
16.
Yan
,
Z. Z.
,
Wang
,
Y. S.
, and
Zhang
,
Ch.
,
2008
, “
Wavelet Method for Calculating the Defect States of Two-Dimensional Phononic Crystals
,”
Acta Mech. Solida Sinica
,
21
, pp.
104
109
.10.1007/s10338-008-0813-6
17.
Mei
,
J.
,
Liu
,
Z. Y.
, and
Shi
,
J.
,
2003
, “
Theory for Elastic Wave Scattering by a Two Dimensional Periodical Array of Cylinders: An Ideal Approach for Band-Structure Calculations
,”
Phys. Rev. B
,
67
, p.
245107
.10.1103/PhysRevB.67.245107
18.
Cai
,
B.
, and
Wei
,
P. J.
,
2013
, “
Surface/Interface Effect on Dispersion Relations of 2D Phononic Crystals With Parallel Nanoholes or Nanofibers
,”
Acta Mech.
,
224
, pp.
2749
2758
.10.1007/s00707-013-0886-2
19.
Qiu
,
C. Y.
,
Liu
,
Z. Y.
, and
Mei
,
J.
,
2005
, “
The Layer Multiple Scattering Method for Calculating Transmission Coefficients of 2D Phononic Crystals
,”
Solid State Commun.
,
134
, pp.
765
770
.10.1016/j.ssc.2005.02.034
20.
Mei
,
J.
,
Liu
,
Z. Y.
, and
Qiu
,
C. Y.
,
2005
, “
Multiple-Scattering Theory for Out-of-Plane Propagation of Elastic Waves in Two-Dimensional Phononic Crystals
,”
J. Phys. Condens. Matter
,
17
, pp.
3735
3757
.10.1088/0953-8984/17/25/003
21.
Liu
,
W.
,
Chen
,
J. W.
,
Liu
,
Y. Q.
, and
Su
,
X. Y.
,
2012
, “
Effect of Interface/Surface Stress on the Elastic Wave Band Structure of Two-Dimensional Phononic Crystals
,”
Phys. Lett. A
,
376
, pp.
605
609
.10.1016/j.physleta.2011.11.043
22.
Li
,
F. L.
,
Wang
,
Y. S.
,
Zhang
,
Ch.
, and
Yu
,
G. L.
,
2013
, “
Boundary Element Method for Band Gap Calculations of Two-Dimensional Solid Phononic Crystals
,”
Eng. Anal. Boundary Elem.
,
37
, pp.
225
235
.10.1016/j.enganabound.2012.10.003
23.
Li
,
F. L.
,
Wang
,
Y. S.
,
Zhang
,
Ch.
, and
Yu
,
G. L.
,
2013
, “
Bandgap Calculations of Two-Dimensional Solid–Fluid Phononic Crystals With the Boundary Element Method
,”
Wave Motion
,
50
, pp.
525
541
.10.1016/j.wavemoti.2012.12.001
24.
Yuan
,
J. H.
, and
Lu
,
Y. Y.
,
2006
, “
Photonic Bandgap Calculations With Dirichlet-to-Neumann Maps
,”
Opt. Soc. Am.
,
23
, pp.
3217
3222
.10.1364/JOSAA.23.003217
25.
Yuan
,
J. H.
, and
Lu
,
Y. Y.
,
2007
, “
Computing Photonic Band Structures by Dirichlet-to-Neumann Maps: The Triangular Lattice
,”
Opt. Commun.
,
273
, pp.
114
120
.10.1016/j.optcom.2007.01.005
26.
Yuan
,
J. H.
,
Lu
,
Y. Y.
, and
Antoine
,
X.
,
2008
, “
Modeling Photonic Crystals by Boundary Integral Equations and Dirichlet-to-Neumann Maps
,”
J. Comput. Phys.
,
227
, pp.
4617
4629
.10.1016/j.jcp.2008.01.014
27.
Li
,
F. L.
, and
Wang
,
Y. S.
,
2011
, “
Application of Dirichlet-to-Neumann Map to Calculation of Band Gaps for Scalar Waves in Two-Dimensional Phononic Crystals
,”
Acta. Acust. Acust.
,
97
, pp.
284
290
.10.3813/AAA.918408
28.
Zhen
,
N.
,
Li
,
F. L.
,
Wang
,
Y. S.
, and
Zhang
,
Ch.
,
2012
, “
Bandgap Calculation for Mixed In-Plane Waves in 2D Phononic Crystals Based on Dirichlet-to-Neumann Map
,”
Acta Mech. Sinica
,
28
, pp.
1143
1153
.10.1007/s10409-012-0092-9
29.
Li
,
F. L.
,
Wang
,
Y. S.
, and
Zhang
,
Ch.
,
2011
, “
Bandgap Calculation of Two-Dimensional Mixed Solid–Fluid Phononic Crystals by Dirichlet-to-Neumann Maps
,”
Phys. Scr.
,
84
, p.
055402
.10.1088/0031-8949/84/05/055402
30.
Zhen
,
N.
Wang
,
Y. S.
and
Zhang
,
Ch.
,
2012
, “
Surface/Interface Effect on Band Structures of Nanosized Phononic Crystals
,”
Mech. Res. Commun.
,
46
, pp.
81
89
.10.1016/j.mechrescom.2012.09.002
31.
Zhen
,
N.
,
Wang
,
Y. S.
, and
Zhang
,
Ch.
,
2013
, “
Bandgap Calculation of In-Plane Waves in Nanoscale Phononic Crystals Taking Account of Surface/Interface Effects
,”
Phys. Rev. E
,
54
, pp.
125
132
.10.1016/j.physe.2013.06.012
32.
Bostrom
,
A.
,
1980
, “
Scattering by a Smooth Elastic Obstacle
,”
J. Acoust. Soc. Am.
,
67
, pp.
1904
1913
.10.1121/1.384455
33.
Olsson
,
P.
,
1986
, “
Scattering of Elastic Waves by a Smooth Rigid Movable Inclusion
,”
J. Acoust. Soc. Am.
,
79
, pp.
1237
1247
.10.1121/1.393703
34.
Stagni
,
L
,
1991
, “
Elastic Field Perturbation by an Elliptic Inhomogeneity With a Sliding Interface
,”
J. Appl. Mech. Phys.
,
42
, pp.
811
816
.10.1007/BF00944564
35.
Vijayakumar
,
S.
, and
Cormack
,
D. E.
,
1987
, “
Nuclei of Strain for Bi-Material Elastic Media With Sliding Interface
,”
J. Elast.
,
17
, pp.
285
290
.10.1007/BF00049459
36.
Wang
,
G.
,
Shao
,
L. H.
,
Liu
,
Y. Z.
, and
Wen
,
J. H.
,
2006
, “
Accurate Evaluation of Lowest Band Gaps in Ternary Locally Resonant Phononic Crystals
,”
Chin. Phys.
,
15
, pp.
1843
1848
.10.1088/1009-1963/15/8/036
You do not currently have access to this content.