Three-dimensional finite transient deformations of polycarbonate (PC) panels impacted at low velocity by a hemispherical-nosed rigid cylinder have been studied by using the commercial finite element software ls-dyna with a thermo–elasto–viscoplastic material model for the PC incorporated in it as a user defined subroutine. The implementation of the subroutine has been verified by comparing analytical and numerical solutions of simple initial-boundary-value problems. The mathematical model of the low velocity impact problem has been validated by comparing the computed and the experimental results for the maximum deflection and time histories of the centroidal deflection. It is found that the initial slope of the reaction force between the impactor and the panel versus the indentation for a curved panel can be nearly 20 times that for the flat panel of the same thickness as the curved panel. For the impact velocities considered, it is found that the maximum effective plastic strain in the PC shell near the center of impact and the dominant deformation mode there strongly depend on the panel curvature, the panel thickness, and the impact speed. Effects of the panel curvature, the panel thickness, and the impact speed on stresses and strains developed in a panel are delineated. This information should help designers of impact resistant transparent panels such as an airplane canopy, automobile windshield, and goggles. However, damage initiation and propagation, and the final indentation induced in the clamped panels have not been computed.

References

1.
Radin
,
J.
, and
Goldsmith
,
W.
,
1988
, “
Normal Projectile Penetration and Perforation of Layered Targets
,”
Int. J. Impact Eng.
,
7
(
2
), pp.
229
259
.10.1016/0734-743X(88)90028-0
2.
Sands
,
J.
,
Patel
,
P.
,
Dehmer
,
P.
, and
Hsieh
,
A.
,
2004
, “
Protecting the Future Force: Transparent Materials Safeguard the Army's Vision
,”
AMPTIAC Q.
,
8
(
4
), pp.
28
36
.
3.
Siviour
,
C. R.
,
Walley
,
S. M.
,
Proud
,
W. G.
, and
Field
,
J. E.
,
2005
, “
The High Strain Rate Compressive Behaviour of Polycarbonate and Polyvinylidene Difluoride
,”
Polymer
,
46
(
26
), pp.
12546
12555
.10.1016/j.polymer.2005.10.109
4.
Moy
,
P.
,
Weerasooriya
,
T.
,
Hsieh
,
A.
, and
Chen
,
W.
,
2003
, “
Strain Rate Response of a Polycarbonate Under Uniaxial Compression
,”
SEM Conference on Experimental Mechanics
, Charlotte, NC, June 2–4,
Society for Experimental Mechanics
, Bethel, CT, pp.
2
4
.
5.
Mulliken
,
A. D.
, and
Boyce
,
M. C.
,
2006
, “
Mechanics of the Rate-Dependent Elastic-Plastic Deformation of Glassy Polymers From Low to High Strain Rates
,”
Int. J. Solids Struct.
,
43
(
5
), pp.
1331
1356
.10.1016/j.ijsolstr.2005.04.016
6.
Mulliken
,
A. D.
,
2006
, “
Mechanics of Amorphous Polymers and Polymer Nanocomposites During High Rate Deformation
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
7.
Richeton
,
J.
,
Ahzi
,
S.
,
Daridon
,
L.
, and
Remond
,
Y.
,
2005
, “
A Formulation of the Cooperative Model for the Yield Stress of Amorphous Polymers for a Wide Range of Strain Rates and Temperatures
,”
Polymer
,
46
(
16
), pp.
6035
6043
.10.1016/j.polymer.2005.05.079
8.
Richeton
,
J.
,
Schlatter
,
G.
,
Vecchio
,
K. S.
,
Remond
,
Y.
, and
Ahzi
,
S.
,
2005
, “
A Unified Model for Stiffness Modulus of Amorphous Polymers Across Transition Temperatures and Strain Rates
,”
Polymer
,
46
(
19
), pp.
8194
8201
.10.1016/j.polymer.2005.06.103
9.
Richeton
,
J.
,
Ahzi
,
S.
,
Vecchio
,
K. S.
,
Jiang
,
F. C.
, and
Adharapurapu
,
R. R.
,
2006
, “
Influence of Temperature and Strain Rate on the Mechanical Behavior of Three Amorphous Polymers: Characterization and Modeling of the Compressive Yield Stress
,”
Int. J. Solids Struct.
,
43
(
7–8
), pp.
2318
2335
.10.1016/j.ijsolstr.2005.06.040
10.
Fleck
,
N. A.
,
Stronge
,
W. J.
, and
Liu
,
J. H.
,
1990
, “
High Strain-Rate Shear Response of Polycarbonate and Polymethyl Methacrylate
,”
Proc. R. Soc. London, Ser. A
,
429
(
1877
), pp.
459
479
.10.1098/rspa.1990.0069
11.
Ramakrishnan
,
K. R.
,
2009
, “
Low Velocity Impact Behaviour of Unreinforced Bi-Layer Plastic Laminates
,” Doctoral dissertation, Australian Defence Force Academy, Canberra, Australia.
12.
Rittel
,
D.
,
2000
, “
An Investigation of the Heat Generated During Cyclic Loading of Two Glassy Polymers. Part I: Experimental
,”
Mech. Mater.
,
32
(
3
), pp.
131
147
.10.1016/S0167-6636(99)00051-4
13.
Rittel
,
D.
, and
Rabin
,
Y.
,
2000
, “
An Investigation of the Heat Generated During Cyclic Loading of Two Glassy Polymers. Part II: Thermal Analysis
,”
Mech. Mater.
,
32
(
3
), pp.
149
159
.10.1016/S0167-6636(99)00052-6
14.
Rittel
,
D.
,
1999
, “
On the Conversion of Plastic Work to Heat During High Strain Rate Deformation of Glassy Polymers
,”
Mech. Mater.
,
31
(
2
), pp.
131
139
.10.1016/S0167-6636(98)00063-5
15.
Richeton
,
J.
,
Ahzi
,
S.
,
Vecchio
,
K. S.
,
Jiang
,
F. C.
, and
Makradi
,
A.
,
2007
, “
Modeling and Validation of the Large Deformation Inelastic Response of Amorphous Polymers Over a Wide Range of Temperatures and Strain Rates
,”
Int. J. Solids Struct.
,
44
(
24
), pp.
7938
7954
.10.1016/j.ijsolstr.2007.05.018
16.
Tervoort
,
T.
,
Smit
,
R.
,
Brekelmans
,
W.
, and
Govaert
,
L. E.
,
1997
, “
A Constitutive Equation for the Elasto-Viscoplastic Deformation of Glassy Polymers
,”
Mech. Time-Depend. Mater.
,
1
(
3
), pp.
269
291
.10.1023/A:1009720708029
17.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
,
1988
, “
Large Inelastic Deformation of Glassy-Polymers. Part 1. Rate Dependent Constitutive Model
,”
Mech. Mater.
,
7
(
1
), pp.
15
33
.10.1016/0167-6636(88)90003-8
18.
Varghese
,
A. G.
, and
Batra
,
R. C.
,
2009
, “
Constitutive Equations for Thermomechanical Deformations of Glassy Polymers
,”
Int. J. Solids Struct.
,
46
(
22–23
), pp.
4079
4094
.10.1016/j.ijsolstr.2009.08.006
19.
Varghese
,
A. G.
, and
Batra
,
R. C.
,
2011
, “
Strain Localization in Polycarbonates Deformed at High Strain Rates
,”
J. Polym. Eng.
,
31
(
6–7
), pp.
495
519
.10.1515/POLYENG.2011.095
20.
Safari
,
K. H.
,
Zamani
,
J.
,
Ferreira
,
F. J.
, and
Guedes
,
R. M.
,
2013
, “
Constitutive Modeling of Polycarbonate During High Strain Rate Deformation
,”
Polym. Eng. Sci.
,
53
(
4
), pp.
752
761
.10.1002/pen.23315
21.
Shen
,
J. H.
,
Lu
,
G. X.
,
Wang
,
Z. H.
, and
Zhao
,
L. M.
,
2010
, “
Experiments on Curved Sandwich Panels Under Blast Loading
,”
Int. J. Impact Eng.
,
37
(
9
), pp.
960
970
.10.1016/j.ijimpeng.2010.03.002
22.
Jing
,
L.
,
Wang
,
Z.
,
Shim
,
V.
, and
Zhao
,
L.
,
2014
, “
An Experimental Study of the Dynamic Response of Cylindrical Sandwich Shells With Metallic Foam Cores Subjected to Blast Loading
,”
Int. J. Impact Eng.
,
71
, pp.
60
72
.10.1016/j.ijimpeng.2014.03.009
23.
Kim
,
S. J.
,
Goo
,
N. S.
, and
Kim
,
T. W.
,
1997
, “
The Effect of Curvature on the Dynamic Response and Impact-Induced Damage in Composite Laminates
,”
Compos. Sci. Technol.
,
57
(
7
), pp.
763
773
.10.1016/S0266-3538(97)80015-2
24.
Ramkumar
,
R. L.
, and
Thakar
,
Y. R.
,
1987
, “
Dynamic-Response of Curved Laminated Plates Subjected to Low Velocity Impact
,”
J. Eng. Mater.
,
109
(
1
), pp.
67
71
.
25.
Khalili
,
S. M. R.
, and
Ardali
,
A.
,
2013
, “
Low-Velocity Impact Response of Doubly Curved Symmetric Cross-Ply Laminated Panel With Embedded SMA Wires
,”
Compos. Struct.
,
105
, pp.
216
226
.10.1016/j.compstruct.2013.04.041
26.
Her
,
S. C.
, and
Liang
,
Y. C.
,
2004
, “
The Finite Element Analysis of Composite Laminates and Shell Structures Subjected to Low Velocity Impact
,”
Compos. Struct.
,
66
(
1–4
), pp.
277
285
.10.1016/j.compstruct.2004.04.049
27.
Lin
,
H. J.
, and
Lee
,
Y. J.
,
1990
, “
On the Inelastic Impact of Composite Laminated Plate and Shell Structures
,”
Compos. Struct.
,
14
(
2
), pp.
89
111
.10.1016/0263-8223(90)90025-A
28.
Leylek
,
Z.
,
Scott
,
M. L.
,
Georgiadis
,
S.
, and
Thomson
,
R. S.
,
1999
, “
Computer Modelling of Impact on Curved Fibre Composite Panels
,”
Compos. Struct.
,
47
(
1–4
), pp.
789
796
.10.1016/S0263-8223(00)00055-6
29.
Khalili
,
S. M. R.
,
Soroush
,
M.
,
Davar
,
A.
, and
Rahmani
,
O.
,
2011
, “
Finite Element Modeling of Low-Velocity Impact on Laminated Composite Plates and Cylindrical Shells
,”
Compos. Struct.
,
93
(
5
), pp.
1363
1375
.10.1016/j.compstruct.2010.10.003
30.
Batra
,
R. C.
, and
Gobinath
,
T.
,
1991
, “
Steady State Axisymmetric Deformations of a Thermoviscoplastic Rod Penetrating a Thick Thermoviscoplastic Target
,”
Int. J. Impact Eng.
,
11
(
1
), pp.
1
31
.10.1016/0734-743X(91)90028-E
31.
Gunnarsson
,
C. A.
,
Weerasooriya
,
T.
, and
Moy
,
P.
,
2008
, “
Measurement of Transient Full-Field, Out-of-Plane Back Surface Displacements of Polycarbonate During Impact
,”
11th International Congress & Exposition on Experimental & Applied Mechanics
, Orlando, FL, June 2–5, pp.
1403
1413
.
32.
Gunnarsson
,
C. A.
,
Weerasooriya
,
T.
, and
Moy
,
P.
,
2011
, “
Impact Response of PC/PMMA Composites
,”
Dynamic Behavior of Materials
, Vol.
1
,
Springer
, New York, pp.
195
209
.
33.
Gunnarsson
,
C. A.
,
Ziemski
,
B.
,
Weerasooriya
,
T.
, and
Moy
,
P.
,
2009
, “
Deformation and Failure of Polycarbonate During Impact as a Function of Thickness
,”
International Congress and Exposition on Experimental Mechanics and Applied Mechanics
, Society for Experimental Mechanics, Albuquerque, NM, June 1–4.
34.
Chen
,
X. J.
, and
Batra
,
R. C.
,
1995
, “
Deep Penetration of Thick Thermoviscoplastic Targets by Long Rigid Rods
,”
Comput. Struct.
,
54
(
4
), pp.
655
670
.10.1016/0045-7949(94)00365-A
35.
Antoine
,
G. O.
, and
Batra
,
R. C.
,
2014
, “
Sensitivity Analysis of Low-Velocity Impact Response of Laminated Plates
,”
Int. J. Impact Eng.
,
78
, pp.
64
80
.10.1016/j.ijimpeng.2014.12.001
36.
Kröner
,
E.
,
1959
, “
Allgemeine kontinuumstheorie der versetzungen und eigenspannungen
,”
Arch. Ration. Mech. Anal.
,
4
(
1
), pp.
273
334
.10.1007/BF00281393
37.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
1
6
.10.1115/1.3564580
You do not currently have access to this content.