Three-dimensional finite transient deformations of polycarbonate (PC) panels impacted at low velocity by a hemispherical-nosed rigid cylinder have been studied by using the commercial finite element software ls-dyna with a thermo–elasto–viscoplastic material model for the PC incorporated in it as a user defined subroutine. The implementation of the subroutine has been verified by comparing analytical and numerical solutions of simple initial-boundary-value problems. The mathematical model of the low velocity impact problem has been validated by comparing the computed and the experimental results for the maximum deflection and time histories of the centroidal deflection. It is found that the initial slope of the reaction force between the impactor and the panel versus the indentation for a curved panel can be nearly 20 times that for the flat panel of the same thickness as the curved panel. For the impact velocities considered, it is found that the maximum effective plastic strain in the PC shell near the center of impact and the dominant deformation mode there strongly depend on the panel curvature, the panel thickness, and the impact speed. Effects of the panel curvature, the panel thickness, and the impact speed on stresses and strains developed in a panel are delineated. This information should help designers of impact resistant transparent panels such as an airplane canopy, automobile windshield, and goggles. However, damage initiation and propagation, and the final indentation induced in the clamped panels have not been computed.
Skip Nav Destination
Article navigation
April 2015
Research-Article
Low Velocity Impact of Flat and Doubly Curved Polycarbonate Panels
G. O. Antoine,
G. O. Antoine
Department of Biomedical Engineering and
Mechanics (M/C 0219),
Virginia Polytechnic Institute and
e-mail: antoineg@vt.edu
Mechanics (M/C 0219),
Virginia Polytechnic Institute and
State University
,Blacksburg, VA 24061
e-mail: antoineg@vt.edu
Search for other works by this author on:
R. C. Batra
R. C. Batra
1
Fellow ASME
Department of Biomedical
Engineering and Mechanics (M/C 0219),
Virginia Polytechnic Institute and
e-mail: rbatra@vt.edu
Department of Biomedical
Engineering and Mechanics (M/C 0219),
Virginia Polytechnic Institute and
State University
,Blacksburg, VA 24061
e-mail: rbatra@vt.edu
1Corresponding author.
Search for other works by this author on:
G. O. Antoine
Department of Biomedical Engineering and
Mechanics (M/C 0219),
Virginia Polytechnic Institute and
e-mail: antoineg@vt.edu
Mechanics (M/C 0219),
Virginia Polytechnic Institute and
State University
,Blacksburg, VA 24061
e-mail: antoineg@vt.edu
R. C. Batra
Fellow ASME
Department of Biomedical
Engineering and Mechanics (M/C 0219),
Virginia Polytechnic Institute and
e-mail: rbatra@vt.edu
Department of Biomedical
Engineering and Mechanics (M/C 0219),
Virginia Polytechnic Institute and
State University
,Blacksburg, VA 24061
e-mail: rbatra@vt.edu
1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received November 10, 2014; final manuscript received February 7, 2015; published online February 26, 2015. Assoc. Editor: Weinong Chen.
J. Appl. Mech. Apr 2015, 82(4): 041003 (21 pages)
Published Online: April 1, 2015
Article history
Received:
November 10, 2014
Revision Received:
February 7, 2015
Online:
February 26, 2015
Citation
Antoine, G. O., and Batra, R. C. (April 1, 2015). "Low Velocity Impact of Flat and Doubly Curved Polycarbonate Panels." ASME. J. Appl. Mech. April 2015; 82(4): 041003. https://doi.org/10.1115/1.4029779
Download citation file:
Get Email Alerts
Cited By
Related Articles
Effect of Curvature on Penetration Resistance of Polycarbonate Panels
J. Appl. Mech (December,2016)
Transient Response of Circular, Elastic Plates to Point Loads
J. Comput. Nonlinear Dynam (July,2009)
Coupled Atomistic/Discrete Dislocation Simulations of Nanoindentation at Finite Temperature
J. Eng. Mater. Technol (October,2005)
Plasticity, stability, and structural optimization
Appl. Mech. Rev (May,2002)
Related Proceedings Papers
Related Chapters
Members in Bending
Design & Analysis of ASME Boiler and Pressure Vessel Components in the Creep Range
Understanding the Problem
Design and Application of the Worm Gear
Basic Concepts
Design & Analysis of ASME Boiler and Pressure Vessel Components in the Creep Range