The mechanical properties of additively manufactured (AM) dense and porous Ti6Al4V specimens were investigated under static and dynamic compression. The fully dense specimens were fabricated using laser melting process. The porous specimens contained spherical pores with full control on the geometry and location of the pores. The laser processed dense material exhibited superior strength in the static and dynamic tests, compared to the same conventional material, but the ductility of the two was comparable. Single pore specimens exhibited a linear relationship between the load and the pore volume fraction. The comparison between single- and double-pore specimens, at identical volume fractions, revealed the importance of the pores' orientation with respect to the applied load.

References

1.
Veiga
,
C.
,
Davim
,
J. P.
, and
Loureiro
,
A. J. R.
,
2012
, “
Properties and Applications of Titanium Alloys: A Brief Review
,”
Rev. Adv. Mater. Sci.
,
32
(
2
), pp.
133
148
http://www.ipme.ru/e-journals/RAMS/no_23212/05_23212_veiga.pdf.
2.
Nicholas
,
T.
,
1980
, “
Dynamic Tensile Testing of Structural Materials Using a Split Hopkinson Bar Apparatus
,” Air Force Wright Aeronautical Laboratories (AFSC), Wright-Patterson Air Force Base, OH, Report No. AFWAL-TR-80-4053.
3.
Wulf
,
G. L.
,
1979
, “
High Strain Rate Compression of Titanium and Some Titanium Alloys
,”
Int. J. Mech. Sci.
,
21
(
12
), pp.
713
718
.10.1016/0020-7403(79)90051-1
4.
ASTM
,
2014
, “
Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium With Powder Bed Fusion
,”
ASTM International
,
West Conshohocken, PA
, Standard No. F2924-14, available at: http://www.astm.org/Standards/F2924.htm
5.
Gu
,
D. D.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.10.1179/1743280411Y.0000000014
6.
Kruth
,
J.-P.
,
2005
, “
Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
11
(
1
), pp.
26
36
.10.1108/13552540510573365
7.
Benzerga
,
A. A.
, and
Leblond
,
J.
,
2010
, “
Ductile Fracture by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
44
, pp.
169
305
.10.1016/S0065-2156(10)44003-X
8.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
10.1115/1.3443401.
9.
Tvergaard
,
V.
,
1982
, “
On Localization in Ductile Materials Containing Spherical Voids
,”
Int. J. Fract.
,
18
(
4
), pp.
237
252
10.1007/BF00015686.
10.
Nahshon
,
K.
, and
Hutchinson
,
J. W.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech. A. Solids
,
27
(
1
), pp.
1
17
.10.1016/j.euromechsol.2007.08.002
11.
Xue
,
Z.
,
Faleskog
,
J.
, and
Hutchinson
,
J. W.
,
2013
, “
Tension–Torsion Fracture Experiments—Part II: Simulations With the Extended Gurson Model and a Ductile Fracture Criterion Based on Plastic Strain
,”
Int. J. Solids Struct.
,
50
(
25–26
), pp.
4258
4269
.10.1016/j.ijsolstr.2013.08.028
12.
da Silva
,
M. G.
, and
Ramesh
,
K. T.
,
1997
, “
The Rate-Dependent Deformation and Localization of Fully Dense and Porous Ti-6Al-4V
,”
Mater. Sci. Eng., A
,
232
(
1–2
), pp.
11
22
.10.1016/S0921-5093(97)00076-2
13.
Biswas
,
N.
,
Ding
,
J. L.
, and
Balla
,
V. K.
,
2012
, “
Deformation and Fracture Behavior of Laser Processed Dense and Porous Ti6Al4V Alloy Under Static and Dynamic Loading
,”
Mater. Sci. Eng., A
,
549
, pp.
213
221
.10.1016/j.msea.2012.04.036
14.
Biswas
,
N.
, and
Ding
,
J.
,
2014
, “
Numerical Study of the Deformation and Fracture Behavior of Porous Ti6Al4V Alloy Under Static and Dynamic Loading
,”
Int. J. Impact Eng.
(in press)10.1016/j.ijimpeng.2014.08.011.
15.
Kolsky
,
H.
,
1949
, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc., London, Sect. B
,
62
(
11
), p.
676
.10.1088/0370-1301/62/11/302
16.
Davies
,
E. D. H.
,
1963
, “
The Dynamic Compression Testing of Solids by the Method of the Split Hopkinson Pressure Bar
,”
J. Mech. Phys. Solids
,
11
(
3
) pp.
155
179
.10.1016/0022-5096(63)90050-4
17.
Ramesh
,
K. T.
,
2008
, “
High Rates and Impact Experiments
,”
Springer Handbook of Experimental Solid Mechanics
,
Springer
,
New York
, pp.
929
960
.
18.
Sano
,
T.
,
Kato
,
K.
, and
Takeishi
,
H.
,
1995
, “
Analysis of Dynamic Deformation Mechanisms in Powder Metals
,”
J. Mater. Process. Technol.
,
48
(
1–4
), pp.
391
397
.10.1016/0924-0136(94)01674-P
19.
Peirs
,
J.
,
Tirry
,
W.
, and
Amin-Ahmadi
,
B.
,
2012
, “
Microstructure of Adiabatic Shear Bands in Ti6Al4V
,”
Mater. Charact.
,
75
, pp.
79
92
10.1016/j.matchar.2012.10.009.
20.
Osovski
,
S.
,
Nahmany
,
Y.
, and
Rittel
,
D.
,
2012
, “
On the Dynamic Character of Localized Failure
,”
Scr. Mater.
,
67
(
7–8
), pp.
693
695
.10.1016/j.scriptamat.2012.07.001
21.
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
1995
, “
An Improved Gurson-Type Model for Hardenable Ductile Metals
,”
Eur. J. Mech. A. Solids
,
14
(
4
), pp.
499
527
.
22.
Mear
,
M. E.
, and
Hutchinson
,
J. W.
,
1984
, “
Influence of Yield Surface Curvatura on Flow Localization in Dilatant Plasticity
,”
Mech. Mater.
,
4
(
3–4
), pp.
395
407
10.1016/0167-6636(85)90035-3.
23.
Perrin
,
G.
, and
Leblond
,
J. B.
,
1990
, “
Analytical Study of a Hollow Sphere Made of Plastic Porous Material and Subjected to Hydrostatic Tension-Application to Some Problems in Ductile Fracture of Metals
,”
Int. J. Plast.
,
6
(
6
), pp.
677
699
.10.1016/0749-6419(90)90039-H
24.
Benzerga
,
A. A.
,
Besson
,
J.
, and
Pineau
,
A.
,
1999
, “
Coalescence-Controlled Anisotropic Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
,
121
(2), pp.
221
229
.10.1115/1.2812369
You do not currently have access to this content.