This study examines the buckling of a single strip of material, modeled as a two-dimensional (2D) micropolar solid. The effects of material microstructure are incorporated by modeling the material using micropolar theory. By setting the micropolar constants to zero, the equations of classical elasticity are obtained and these results are compared to the buckling analysis performed by previous authors on elastic materials. In the limiting case, when the thickness of the strip becomes small in comparison to the overall length, the micropolar beam equations are developed. Because buckling analysis requires the consideration of geometric nonlinearity, nonlinear micropolar equations are derived using a variational procedure, which also results in variationally consistent boundary conditions. Due to the complexity of micropolar theory, its application has been limited to linear analysis with a few exceptions.

References

1.
Voigt
,
W.
,
1892
, “Theoretische Studien über die Elasticitätsverhältnisse der Krystalle I,”
Abh. d Kön. Ges. d Wiss. Göttingen
, pp. 3–52. http://www.neo-classical-physics.info/uploads/3/0/6/5/3065888/voigt_-_elasticity_of_crystals_-_i.pdf
2.
Cosserat
,
E.
, and
Cosserat
,
F.
,
1909
,
Theory of Deformable Bodies
,
Scientific Library, A. Hermann and Sons
, Paris.
3.
Dyszlewicz
,
J.
,
2004
,
Micropolar Theory of Elasticity
,
Springer-Verlag
, Berlin.
4.
Eringen
,
A. C.
, and
Suhubi
,
E. S.
,
1964
, “
Nonlinear Theory of Simple Micro-Elastic Solids—I
,”
Int. J. Eng. Sci.
,
2
(
2
), pp.
189
203
.10.1016/0020-7225(64)90004-7
5.
Suhubi
,
E. S.
, and
Eringen
,
A. C.
,
1964
, “
Nonlinear Theory of Simple Micro-Elastic Solids—II
,”
Int. J. Eng. Sci.
,
2
(
4
), pp.
389
404
.10.1016/0020-7225(64)90017-5
6.
Kafadar
,
C. B.
, and
Eringen
,
A. C.
,
1971
, “
Micropolar Media—I the Classical Theory
,”
Int. J. Eng. Sci.
,
9
(
3
), pp.
271
305
.10.1016/0020-7225(71)90040-1
7.
Erbay
,
S.
,
Erbay
,
H. A.
, and
Dost
,
S.
,
1991
, “
Nonlinear Wave Modulation in Micropolar Elastic Media—I. Longitudinal Waves
,”
Int. J. Eng. Sci.
,
29
(
7
), pp.
845
858
.10.1016/0020-7225(91)90006-O
8.
Gauthier
,
R. D.
,
1974
, “
Analytical and Experimental Investigations in Linear Isotropic Micropolar Elasticity
,” Ph.D. thesis, University of Colorado, Boulder, CO.
9.
Gauthier
,
R. D.
, and
Jahsman
,
W. E.
,
1975
, “
A Quest for Micropolar Elastic Constants
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
369
374
.10.1115/1.3423583
10.
Mora
,
R. J.
, and
Waas
,
A. M.
,
2007
, “
Evaluation of the Micropolar Elasticity Constants for Honeycombs
,”
Acta Mech.
,
192
(
1–4
), pp.
1
16
.10.1007/s00707-007-0446-8
11.
Bazant
,
Z. P.
, and
Christensen
,
M.
,
1972
, “
Analogy Between Micropolar Continuum and Grid Frames Under Initial Stress
,”
Int. J. Solids Struct.
,
8
(
3
), pp.
327
346
.10.1016/0020-7683(72)90093-5
12.
Kumar
,
R. S.
, and
McDowell
,
D. L.
,
2004
, “
Generalized Continuum Modeling of 2-D Periodic Cellular Solids
,”
Int. J. Solids Struct.
,
41
(
26
), pp.
7399
7422
.10.1016/j.ijsolstr.2004.06.038
13.
Chen.
,
J. Y.
, and
Huang
,
Y.
,
1998
, “
Fracture Analysis of Cellular Materials: A Strain Gradient Model
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
789
828
.10.1016/S0022-5096(98)00006-4
14.
Trovalusci
,
P.
,
Starzewski
,
M. O.
,
Bellis
,
M. L. D.
, and
Murrali
,
A.
,
2014
, “
Scale-Dependent Homogenization of Random Composites as Micropolar Continua
,”
Eur. J. Mech.—A. Solids
,
49
, pp.
396
407
.10.1016/j.euromechsol.2014.08.010
15.
Trovalusci
,
P.
,
Bellis
,
M. L. D.
,
Starzewski
,
M. O.
, and
Murrali
,
A.
,
2014
, “
Particulate Random Composites Homogenized as Micropolar Materials
,”
Meccanica
,
49
(
11
), pp.
2719
2727
.10.1007/s11012-014-0031-x
16.
Yang
,
J. F. C.
, and
Lakes
,
R. S.
,
1980
, “
Effect of Couple Stresses in Compact Bone: Transient Experiments
,” Adv. Bioeng.,
2
, pp.
65
67
.10.1002/bit.260220106
17.
Yang
,
J. F. C.
, and
Lakes
,
R. S.
,
1982
, “
Experimental Study of Micropolar and Couple Stress Elasticity in Compact Bone in Bending
,”
J. Biomech.
,
15
(
2
), pp.
91
98
.10.1016/0021-9290(82)90040-9
18.
Starzewski
,
M. O.
,
2008
,
Microstructural Randomness and Scaling in Mechanics of Materials
,
Chapman and Hall
, London.
19.
Ji
,
W.
, and
Waas
,
A. M.
,
2010
, “
2D Elastic Analysis of the Sandwich Panel Buckling Problem: Benchmark Solution and Accurate Finite Element Formulations
,”
Z. Angew. Math. Phys.
,
61
(5), pp.
897
917
.10.1007/s00033-009-0041-z
20.
Starzewski
,
M. O.
, and
Jasiuk
,
I.
,
1995
, “
Stress Invariance in Planar Cosserat Elasticity
,”
Proc. R. Soc. A
,
451
(1942), pp.
453
470
.10.1098/rspa.1995.0136
21.
Ramezani
,
S.
,
Naghdabadi
,
R.
, and
Sohrabpour
,
S.
,
2009
, “
Analysis of Micropolar Elastic Beams
,”
Eur. J. Mech. A. Solids
,
28
(
2
), pp.
202
208
.10.1016/j.euromechsol.2008.06.006
22.
Ambartzumian
,
S. A.
,
2001
, “
The Theory of the Transversal Isotropic Plate With the Account of the Couple Stresses
,”
Proc. Natl. Acad. Sci. Armenia Mech.
,
54
(
1
), pp.
3
16
.
You do not currently have access to this content.