The parametrization of a rigid-body rotation is a classical subject in rigid-body dynamics. Euler angles, the rotation matrix and quaternions are the most common representations. However, Euler angles are known to be prone to singularities, besides not being frame-invariant. The full 3 × 3 rotation matrix conveys all the motion information, but poses the problem of an excessive number of parameters, nine, to represent a transformation that entails only three independent parameters. Quaternions are singularity-free, and thus, ideal to study rigid-body kinematics. However, quaternions, comprising four components, are subject to one scalar constraint, which has to be included in the mathematical model of rigid-body dynamics. The outcome is that the use of quaternions imposes one algebraic constraint, even in the case of mechanically unconstrained systems. An alternative parametrization is proposed here, that (a) comprises only three independent parameters; (b) is fairly robust to representation singularities; and (c) satisfies the quaternion scalar constraint intrinsically. To illustrate the concept, a simple, yet nontrivial case study is included. This is a mechanical system composed of a rigid, toroidal wheel rolling without slipping or skidding on a horizontal surface. The simulation algorithm based on the proposed parametrization and fundamentally on quaternions, together with the invariant relations between the quaternion rate of change and the angular velocity, is capable of reproducing the falling of the wheel under deterministic initial conditions and a random disturbance acting on the tilting axis. Finally, a comparative study is included, on the numerical conditioning of the parametrization proposed here and that based on Euler angles. Ours shows as broader well-conditional region than Euler angles offer. Moreover, the two parametrizations exhibit an outstanding complementarity: where the conditioning of one degenerates, the other comes to rescue.
Skip Nav Destination
Article navigation
Research-Article
A Reparametrization of the Rotation Matrix in Rigid-Body Dynamics
Xiaoqing Zhu,
Xiaoqing Zhu
1
School of Electronic Information
and Control Engineering,
and Control Engineering,
Beijing University of Technology
,Beijing 100124
, China
Centre for Intelligent Machines,
Department of Mechanical Engineering,
e-mails: alex.zhuxq@gmail.com; alexzhu@cim.mcgill.ca
Department of Mechanical Engineering,
McGill University
,Montréal, QC H3A 2K6
, Canada
e-mails: alex.zhuxq@gmail.com; alexzhu@cim.mcgill.ca
1Corresponding author.
Search for other works by this author on:
Jorge Angeles
Jorge Angeles
Professor
Fellow ASME
Centre for Intelligent Machines,
Department of Mechanical Engineering,
e-mail: angeles@cim.mcgill.ca
Fellow ASME
Centre for Intelligent Machines,
Department of Mechanical Engineering,
McGill University
,Montréal, QC H3A 2K6
, Canada
e-mail: angeles@cim.mcgill.ca
Search for other works by this author on:
Xiaoqing Zhu
School of Electronic Information
and Control Engineering,
and Control Engineering,
Beijing University of Technology
,Beijing 100124
, China
Centre for Intelligent Machines,
Department of Mechanical Engineering,
e-mails: alex.zhuxq@gmail.com; alexzhu@cim.mcgill.ca
Department of Mechanical Engineering,
McGill University
,Montréal, QC H3A 2K6
, Canada
e-mails: alex.zhuxq@gmail.com; alexzhu@cim.mcgill.ca
Jorge Angeles
Professor
Fellow ASME
Centre for Intelligent Machines,
Department of Mechanical Engineering,
e-mail: angeles@cim.mcgill.ca
Fellow ASME
Centre for Intelligent Machines,
Department of Mechanical Engineering,
McGill University
,Montréal, QC H3A 2K6
, Canada
e-mail: angeles@cim.mcgill.ca
1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the JOURNAL OF APPLIED MECHANICS. Manuscript received September 22, 2014; final manuscript received March 6, 2015; published online March 31, 2015. Assoc. Editor: Alexander F. Vakakis.
J. Appl. Mech. May 2015, 82(5): 051003 (9 pages)
Published Online: May 1, 2015
Article history
Received:
September 22, 2014
Revision Received:
March 6, 2015
Online:
March 31, 2015
Citation
Zhu, X., and Angeles, J. (May 1, 2015). "A Reparametrization of the Rotation Matrix in Rigid-Body Dynamics." ASME. J. Appl. Mech. May 2015; 82(5): 051003. https://doi.org/10.1115/1.4030006
Download citation file:
Get Email Alerts
Cited By
Enhancement of Synchronization in Nonlinear MEMS Oscillator Based on Electrothermal Adjustment
J. Appl. Mech (April 2025)
Related Articles
On the Dynamics of the Dynabee
J. Appl. Mech (June,2000)
Design and Analysis of a Spherical Continuously Variable Transmission
J. Mech. Des (March,2002)
Dynamics of Hypoid Gear Transmission With Nonlinear Time-Varying Mesh Characteristics
J. Mech. Des (June,2003)
Towing an Object With a Rover
J. Mechanisms Robotics (February,2025)
Related Chapters
Research on Autobody Panels Developmental Technology Based on Reverse Engineering
International Conference on Advanced Computer Theory and Engineering, 5th (ICACTE 2012)
Design and Analysis of a Double-Half-Revolution Mechanism Exploration Rover
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Backlash
Design and Application of the Worm Gear