Abstract

We investigate the behavior of soft magnetoactive periodic laminates under remotely applied magnetic field. We derive explicit formulae for the induced deformation due to magnetic excitation of the laminates with hyperelastic magnetoactive phases. Next, we obtain the closed-form formulae for the velocities of long transverse waves. We show the dependence of the wave velocity on the applied magnetic intensity and induced strains, as well as on the wave propagation direction. Based on the long wave analysis, we derive closed-form formulae for the critical magnetic field corresponding to the loss of macroscopic stability. Finally, we analyze the transverse wave band gaps appearing in magnetoactive laminates in the direction normal to the layers. We illustrate the band gap tunability—width and position—by magnetically induced deformation.

References

1.
Ginder
,
J. M.
,
Clark
,
S. M.
,
Schlotter
,
W. F.
, and
Nichols
,
M. E.
,
2002
, “
Magnetostrictive Phenomena in Magnetorheological Elastomers
,”
Int. J. Mod. Phys. B
,
16
(
17n18
), pp.
2412
2418
. 10.1142/S021797920201244X
2.
Guan
,
X.
,
Donga
,
X.
, and
Ou
,
J.
,
2008
, “
Magnetostrictive Effect of Magnetorheological Elastomer
,”
J. Magn. and Magn. Mat.
,
320
(
3–4
), pp.
158
163
. 10.1016/j.jmmm.2007.05.043
3.
Varga
,
Z.
,
Filipcsei
,
G.
, and
Zrinyi
,
M.
,
2005
, “
Smart Composites with Controlled Anisotropy
,”
Polymer
,
46
(
18
), pp.
7779
7787
. 10.1016/j.polymer.2005.03.102
4.
Ginder
,
J. M.
,
Nichols
,
M. E.
,
Elie
,
L. D.
, and
Clark
,
S. M.
,
2000
, “
Controllable-Stiffness Components Based on Magnetorheological Elastomers
,”
Proc. SPIE
,
3985
(
1
), p.
418
. 10.1117/12.388844
5.
Erb
,
R. M.
,
Libanori
,
R.
,
Rothfuchs
,
N.
, and
Studart
,
A. R.
,
2012
, “
Composites Reinforced in Three Dimensions by Using Low Magnetic Fields
,”
Science
,
335
(
6065
), pp.
199
204
. 10.1126/science.1210822
6.
Ginder
,
J. M.
,
Schlotter
,
W. F.
, and
Nichols
,
M. E.
,
2001
, “
Magnetorheological Elastomers in Tunable Vibration Absorbers
,”
Proc. SPIE
,
4331
(
1
), pp.
103
111
. 10.1117/12.432694
7.
Deng
,
H. X.
,
Gong
,
X. L.
, and
Wang
,
L. H.
,
2006
, “
Development of an Adaptive Tuned Vibration Absorber with Magnetorheological Eastomer
,”
Smart Mater. Struct.
,
15
(
5
), pp.
N111
N116
. 10.1088/0964-1726/15/5/N02
8.
Wang
,
Q.
,
Dong
,
X.
,
Li
,
L.
, and
Ou
,
J.
,
2018
, “
Mechanical Modeling for Magnetorheological Elastomer Isolators Based on Constitutive Equations and Electromagnetic Analysis
,”
Smart Mater. Struct.
,
27
(
6
), p.
065017
. 10.1088/1361-665X/aabdb5
9.
Gong
,
X.
,
Fan
,
Y.
,
Xuan
,
S.
,
Xu
,
Y.
, and
Peng
,
C.
,
2012
, “
Control of the Damping Properties of Magnetorheological Elastomers by Using Polycaprolactone as a Temperature-Controlling Component
,”
Ind. Eng. Chem. Res.
,
51
(
18
), pp.
6395
6403
. 10.1021/ie300317b
10.
Yang
,
J.
,
Gong
,
X.
,
Deng
,
H.
,
Qin
,
L.
, and
Xuan
,
S.
,
2012
, “
Investigation on the Mechanism of Damping Behavior of Magnetorheological Elastomers
,”
Smart Mater. Struct.
,
21
(
12
), p.
125015
. 10.1088/0964-1726/21/12/125015
11.
Farshad
,
M.
, and
Le Roux
,
M.
,
2004
, “
A New Active Noise Abatement Barrier System
,”
Polym. Test.
,
23
(
7
), pp.
855
860
. 10.1016/j.polymertesting.2004.02.003
12.
Yu
,
K.
,
Fang
,
N. X.
,
Huang
,
G.
, and
Wang
,
Q.
,
2018
, “
Magnetoactive Acoustic Metamaterials
,”
Adv. Mater.
,
30
(
21
), pp.
1
10
. 10.1002/adma.201706348
13.
Tian
,
T. F.
,
Li
,
W. H.
, and
Deng
,
Y. M.
,
2011
, “
Sensing Capabilities of Graphite Based MR Elastomers
,”
Smart Mater. Struct.
,
20
(
2
), p.
025022
. 10.1088/0964-1726/20/2/025022
14.
Lanotte
,
L.
,
Ausanio
,
G.
,
Hison
,
C.
,
Iannotti
,
V.
, and
Luponio
,
C.
,
2003
, “
The Potentiality of Composite Elastic Magnets as Novel Materials for Sensors and Actuators
,”
Sens. Actuat.
,
106
(
1–3
), pp.
56
60
. 10.1016/S0924-4247(03)00133-X
15.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
. 10.1038/s41586-018-0185-0
16.
Tang
,
S. Y.
,
Zhang
,
X.
,
Sun
,
S.
,
Yuan
,
D.
,
Zhao
,
Q.
,
Yan
,
S.
,
Deng
,
L.
,
Yun
,
G.
,
Zhang
,
J.
,
Zhang
,
S.
, and
Li
,
W.
,
2018
, “
Versatile Microfluidic Platforms Enabled by Novel Magnetorheological Elastomer Microactuators
,”
Adv. Funct. Mater.
,
28
(
8
), p.
1705484
. 10.1002/adfm.v28.8
17.
Stanier
,
D. C.
,
Ciambella
,
J.
, and
Rahatekar
,
S. S.
,
2016
, “
Fabrication and Characterisation of Short Fibre Reinforced Elastomer Composites for Bending and Twisting Magnetic Actuation
,”
Compos. Part A
,
91
(
1
), pp.
168
176
. 10.1016/j.compositesa.2016.10.001
18.
Makarova
,
L. A.
,
Alekhina
,
Y. A.
,
Rusakova
,
T. S.
, and
Perov
,
N. S.
,
2016
, “
Tunable Properties of Magnetoactive Elastomers for Biomedical Applications
,”
Phys. Procedia
,
82
(
1
), pp.
38
45
. 10.1016/j.phpro.2016.05.008
19.
Luo
,
Z.
,
Evans
,
B. A.
, and
Chang
,
C. H.
,
2019
, “
Magnetically Actuated Dynamic Iridescence Inspired by the Neon Tetra
,”
ACS Nano
,
13
(
4
), pp.
4657
4666
. 10.1021/acsnano.9b00822
20.
Tang
,
J.
,
Qiao
,
Y.
,
Chu
,
Y.
,
Tong
,
Z.
,
Zhou
,
Y.
,
Zhang
,
W.
,
Xie
,
S.
,
Hu
,
J.
, and
Wang
,
T.
,
2019
, “
Magnetic Double-Network Hydrogels for Tissue Hyperthermia and Drug Release
,”
J. Mater. Chem. B
,
7
(
8
), pp.
1311
1321
. 10.1039/C8TB03301C
21.
Maugin
,
G. A.
,
1981
, “
Wave Motion in Magnetizable Deformable Solids
,”
Int. J. Eng. Sci.
,
19
(
3
), pp.
321
388
. 10.1016/0020-7225(81)90059-8
22.
Abd-Alla
,
A. E. N.
, and
Maugin
,
G. A.
,
1987
, “
Nonlinear Magnetoacoustic Equations
,”
J. Acoust. Soc. Am.
,
82
(
5
), pp.
1746
1752
. 10.1121/1.395167
23.
Hefni
,
I. A. Z.
,
Ghaleb
,
A. F.
, and
Maugin
,
G. A.
,
1995
, “
Surface Waves in a Nonlinear Magnetoelastic Conductor of Finite Electric Conductivity
,”
Int. J. Eng. Sci.
,
33
(
14
), pp.
2085
2102
. 10.1016/0020-7225(95)00054-2
24.
Boulanger
,
P.
,
1989
, “
Inhomogeneous Magnetoelastic Planewaves
,”
North-Holland Ser. Appl. Math. Mech.
,
35
(
C
), pp.
601
606
. 10.1016/B978-0-444-87272-2.50095-6
25.
Destrade
,
M.
, and
Ogden
,
R. W.
,
2011
, “
On Magneto-acoustic Waves in Finitely Deformed Elastic Solids
,”
Math. Mech. Solids
,
16
(
6
), pp.
594
604
. 10.1177/1081286510387695
26.
Saxena
,
P.
, and
Ogden
,
R. W.
,
2011
, “
On Surface Waves in a Finitely Deformed Magnetoelastic Half-Space
,”
Int. J. Appl. Mech.
,
3
(
4
), pp.
633
665
. 10.1142/S1758825111001172
27.
Saxena
,
P.
, and
Ogden
,
R. W.
,
2012
, “
On Love-Type Waves in a Finitely Deformed Magnetoelastic Layered Half-Space
,”
Z. Angew. Math. Phys.
,
63
(
6
), pp.
1177
1200
. 10.1007/s00033-012-0204-1
28.
Galich
,
P. I.
,
Fang
,
N. X.
,
Boyce
,
M. C.
, and
Rudykh
,
S.
,
2017
, “
Elastic Wave Propagation in Finitely Deformed Layered Materials
,”
J. Mech. Phys. Solids
,
98
(
1
), pp.
390
410
. 10.1016/j.jmps.2016.10.002
29.
Galich
,
P. I.
, and
Rudykh
,
S.
,
2017
, “
Shear Wave Propagation and Band Gaps in Finitely Deformed Dielectric Elastomer Laminates: Long Wave Estimates and Exact Solution
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091002
. 10.1115/1.4037159
30.
Rudykh
,
S.
, and
Bertoldi
,
K.
,
2013
, “
Stability of Anisotropic Magnetorheological Elastomers in Finite Deformations: A Micromechanical Approach.
,”
J. Mech. Phys. Solids
,
61
(
4
), pp.
949
967
. 10.1016/j.jmps.2012.12.008
31.
Danas
,
K.
,
Kankanala
,
S. V.
, and
Triantafyllidis
,
N.
,
2012
, “
Experiments and Modeling of Iron-Particle-Filled Magnetorheological Elastomers
,”
J. Mech. Phys. Solids
,
60
(
1
), pp.
120
138
. 10.1016/j.jmps.2011.09.006
32.
Galipeau
,
E.
,
Rudykh
,
S.
,
deBotton
,
G.
, and
Castañeda
,
P. P.
,
2014
, “
Magnetoactive Elastomers with Periodic and Random Microstructures
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3012
3024
. 10.1016/j.ijsolstr.2014.04.013
33.
Metsch
,
P.
,
Kalina
,
K. A.
,
Spieler
,
C.
, and
Kästner
,
M.
,
2016
, “
A Numerical Study on Magnetostrictive Phenomena in Magnetorheological Elastomers
,”
Comput. Mater. Sci.
,
124
(
1
), pp.
364
374
. 10.1016/j.commatsci.2016.08.012
34.
Vu
,
D. K.
, and
Steinmann
,
P.
,
2007
, “
Nonlinear Electro-and Magneto-Elastostatics: Material and Spatial Settings
,”
Int. J. Solids Struct.
,
44
(
24
), pp.
7891
7905
. 10.1016/j.ijsolstr.2007.05.017
35.
Keip
,
M. A.
, and
Rambausek
,
M.
,
2016
, “
A Multiscale Approach to the Computational Characterization of Magnetorheological Elastomers
,”
Int. J. Numer. Methods Eng.
,
107
(
4
), pp.
338
360
. 10.1002/nme.v107.4
36.
Keip
,
M. A.
, and
Rambausek
,
M.
,
2017
, “
Computational and Analytical Investigations of Shape Effects in the Experimental Characterization of Magnetorheological Elastomers
,”
Int. J. Solids Struct.
,
121
(
1
), pp.
1
20
. 10.1016/j.ijsolstr.2017.04.012
37.
Dorfmann
,
L.
, and
Ogden
,
R. W.
,
2014
,
Nonlinear Theory of Electroelastic and Magnetoelastic Interactions
, vol.
1
,
Springer
,
Boston, MA
. 10.1007/978-1-4614-9596-3
38.
Kankanala
,
S. V.
, and
Triantafyllidis
,
N.
,
2008
, “
Magnetoelastic Buckling of a Rectangular Block in Plane Strain
,”
J. Mech. Phys. Solids
,
56
(
4
), pp.
1147
1169
. 10.1016/j.jmps.2007.10.008
39.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
. 10.1016/0022-5096(93)90013-6
40.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
. 10.5254/1.3538357
41.
Goshkoderia
,
A.
, and
Rudykh
,
S.
,
2017
, “
Stability of Magnetoactive Composites with Periodic Microstructures Undergoing Finite Strains in the Presence of a Magnetic Field
,”
Compos. Part B: Eng.
,
128
(
1
), pp.
19
29
. 10.1016/j.compositesb.2017.06.014
42.
Yuan
,
B.
,
Humphrey
,
V. F.
,
Wen
,
J.
, and
Wen
,
X.
,
2013
, “
On the Coupling of Resonance and Bragg Scattering Effects in Three-Dimensional Locally Resonant Sonic Materials
,”
Ultrasonics
,
53
(
7
), pp.
1332
1343
. 10.1016/j.ultras.2013.03.019
43.
Krushynska
,
A.
,
Miniaci
,
M.
,
Bosia
,
F.
, and
Pugno
,
N.
,
2017
, “
Coupling Local Resonance with Bragg Band Gaps in Single-Phase Mechanical Metamaterials
,”
Extreme Mech. Lett.
,
12
(
1
), pp.
30
36
. 10.1016/j.eml.2016.10.004
44.
Rytov
,
S.
,
1956
, “
Acoustical Properties of a Thinly Laminated Medium
,”
Soviet Phys. Acoustics
,
2
(
1
), pp.
68
80
.
45.
Jandron
,
M.
, and
Henann
,
D. L.
,
2018
, “
A Numerical Simulation Capability for Electroelastic Wave Propagation in Dielectric Elastomer Composites: Application to Tunable Soft Phononic Crystals
,”
Int. J. Solids. Struct.
,
150
(
1
), pp.
1
21
. 10.1016/j.ijsolstr.2018.04.023
46.
Li
,
J.
,
Slesarenko
,
V.
,
Galich
,
P. I.
, and
Rudykh
,
S.
,
2018
, “
Oblique Shear Wave Propagation in Finitely Deformed Layered Composites
,”
Mech. Res. Commun.
,
87
(
1
), pp.
21
28
. 10.1016/j.mechrescom.2017.12.002
47.
Slesarenko
,
V.
,
Galich
,
P. I.
,
Li
,
J.
,
Fang
,
N. X.
, and
Rudykh
,
S.
,
2018
, “
Foreshadowing Elastic Instabilities by Negative Group Velocity in Soft Composites
,”
Appl. Phys. Lett.
,
113
(
3
), p.
031901
. 10.1063/1.5042077
You do not currently have access to this content.