Abstract

Two-dimensional hexachiral lattices belong to the family of honeycomb-like mechanical metamaterials such as triangular, hexagonal, and kagome lattices. The common feature of this family of beam-based metamaterials is their six-fold rotational symmetry which guarantees their (transversely-) isotropic elastic response. In the case of hexachiral lattices, a single geometric parameter may be introduced to control the degree of chirality such that the elastic Poisson's ratio can be adjusted between 0.33 and −0.8. Detailed finite element simulations are performed to establish the structure–property relationships for hexachiral lattices for relative densities ranging from 1% to 45%. It is shown that both the Young's and shear moduli are always lower for hexachiral structures than for optimal lattices (triangular and kagome). This result is in line with the general understanding that stretching-dominated architectures outperform bending-dominated architectures. The same conclusions may be drawn from the comparison of the tensile yield strength. However, hexachiral structures provide a lower degree of plastic anisotropy than stretching-dominated lattices. Furthermore, special hexachiral configurations have been identified that exhibit a slightly higher shear yield strength than triangular and kagome lattices, thereby presenting an example of bending-dominated architectures outperforming stretching-dominated architectures of equal mass. Tensile specimens have been additively manufactured from a tough PLA polymer and tested to partially validate the simulation results.

References

1.
Bitzer
,
T. N.
,
1997
,
Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing
,
Springer Science & Business Media
,
Dordrecht
.
2.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids
,
Cambridge University Press
,
Cambridge
.
3.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(
3–4
), pp.
309
327
. 10.1016/S0079-6425(00)00016-5
4.
Wadley
,
H. N. G.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
,
2003
, “
Fabrication and Structural Performance of Periodic Cellular Metal Sandwich Structures
,”
Compos. Sci. Technol.
,
63
(
16
), pp.
2331
2343
. 10.1016/S0266-3538(03)00266-5
5.
Sypeck
,
D. J.
,
2005
, “
Cellular Truss Core Sandwich Structures
,”
Appl. Compos. Mater.
,
12
(
3
), pp.
229
246
. 10.1007/s10443-005-1129-z
6.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
. 10.1126/science.1211649
7.
Meza
,
L. R.
,
Das
,
S.
, and
Greer
,
J. R.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
. 10.1126/science.1255908
8.
Wendy Gu
,
W.
, and
and Greer
,
J. R.
,
2015
, “
Ultra-Strong Architected Cu Meso-Lattices
,”
Extrem. Mech. Lett.
,
2
(
1
), pp.
7
14
. 10.1016/j.eml.2015.01.006
9.
Pham
,
M.-S.
,
Liu
,
C.
,
Todd
,
I.
, and
Lertthanasarn
,
J.
,
2019
, “
Damage-Tolerant Architected Materials Inspired by Crystal Microstructure
,”
Nature
,
565
(
7739
), pp.
305
311
. 10.1038/s41586-018-0850-3
10.
Cerardi
,
A.
,
Caneri
,
M.
,
Meneghello
,
R.
,
Concheri
,
G.
, and
Ricotta
,
M.
,
2013
, “
Mechanical Characterization of Polyamide Cellular Structures Fabricated Using Selective Laser Sintering Technologies
,”
Mater. Des.
,
46
(
1
), pp.
910
915
. 10.1016/j.matdes.2012.11.042
11.
Maskery
,
I.
,
Sturm
,
L.
,
Aremu
,
A. O.
,
Panesar
,
A.
,
Williams
,
C. B.
,
Tuck
,
C. J.
,
Wildman
,
R. D.
,
Ashcroft
,
I. A.
, and
Hague
,
R. J. M.
,
2018
, “
Insights Into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing
,”
Polymer
,
152
(
1
), pp.
62
71
. 10.1016/j.polymer.2017.11.049
12.
Gümrük
,
R.
, and
Mines
,
R. A. W.
,
2013
, “
Compressive Behaviour of Stainless Steel Micro-Lattice Structures
,”
Int. J. Mech. Sci.
,
68
(
1
), pp.
125
139
. 10.1016/j.ijmecsci.2013.01.006
13.
Tancogne-Dejean
,
T.
,
Spierings
,
A. B.
, and
Mohr
,
D.
,
2016
, “
Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption Under Static and Dynamic Loading
,”
Acta Mater.
,
116
(
1
), pp.
14
28
. 10.1016/j.actamat.2016.05.054
14.
Al-Ketan
,
O.
,
Rowshan
,
R.
, and
Abu Al-Rub
,
R. K.
,
2018
, “
Topology-Mechanical Property Relationship of 3D Printed Strut, Skeletal, and Sheet Based Periodic Metallic Cellular Materials
,”
Addit. Manuf.
,
19
(
1
), pp.
167
183
. 10.1016/j.addma.2017.12.006
15.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1
), pp.
465
481
. 10.1007/s00170-015-7077-3
16.
Gibson
,
M. A.
,
Mykulowycz
,
N. M.
,
Shim
,
J.
,
Fontana
,
R.
,
Schmitt
,
P.
,
Roberts
,
A.
,
Ketkaew
,
J.
,
Shao
,
L.
,
Chen
,
W.
,
Bordeenithikasem
,
P.
,
Myerberg
,
J. S.
,
Fulop
,
R.
,
Verminski
,
M. D.
,
Sachs
,
E. M.
,
Chiang
,
Y.-M.
,
Schuh
,
C. A.
,
John Hart
,
A.
, and
Schroers
,
J.
,
2018
, “
3D Printing Metals Like Thermoplastics: Fused Filament Fabrication of Metallic Glasses
,”
Mater. Today
,
21
(
7
), pp.
697
702
. 10.1016/j.mattod.2018.07.001
17.
Deshpande
,
V. S.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
2001
, “
Foam Topology: Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
(
6
), pp.
1035
1040
. 10.1016/S1359-6454(00)00379-7
18.
Vigliotti
,
A.
, and
Pasini
,
D.
,
2012
, “
Stiffness and Strength of Tridimensional Periodic Lattices
,”
Comput. Methods Appl. Mech. Eng.
,
229–232
(
1
), pp.
27
43
. 10.1016/j.cma.2012.03.018
19.
Zok
,
F. W.
,
Latture
,
R. M.
, and
Begley
,
M. R.
,
2016
, “
Periodic Truss Structures
,”
J. Mech. Phys. Solids
,
96
(
1
), pp.
184
203
. 10.1016/j.jmps.2016.07.007
20.
Wang
,
Y.
,
Groen
,
J. P.
, and
Sigmund
,
O.
,
2019
, “
Simple Optimal Lattice Structures for Arbitrary Loadings
,”
Extrem. Mech. Lett.
,
29
(
1
), pp.
100447
. 10.1016/j.eml.2019.03.004
21.
Han
,
S. C.
,
Lee
,
J. W.
, and
Kang
,
K.
,
2015
, “
A New Type of Low Density Material: Shellular
,”
Adv. Mater.
,
27
(
37
), pp.
5506
5511
. 10.1002/adma.201501546
22.
Bonatti
,
C.
, and
Mohr
,
D.
,
2019
, “
Mechanical Performance of Additively-Manufactured Anisotropic and Isotropic Smooth Shell-Lattice Materials: Simulations & Experiments
,”
J. Mech. Phys. Solids
,
122
(
1
), pp.
1
26
. 10.1016/j.jmps.2018.08.022
23.
Berger
,
J. B.
,
Wadley
,
H. N. G.
, and
McMeeking
,
R. M.
,
2017
, “
Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness
,”
Nature
,
543
(
7646
), pp.
1
12
.
24.
Tancogne-Dejean
,
T.
,
Diamantopoulou
,
M.
,
Gorji
,
M. B.
,
Bonatti
,
C.
, and
Mohr
,
D.
,
2018
, “
3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness
,”
Adv. Mater.
,
30
(
45
), pp.
1803334
.
25.
Grenestedt
,
J. L.
,
1999
, “
Effective Elastic Behavior of Some Models for Perfect Cellular Solids
,”
Int. J. Solids Struct.
,
36
(
10
), pp.
1471
1501
. 10.1016/S0020-7683(98)00048-1
26.
Meza
,
L. R.
,
Phlipot
,
G.
,
Portela
,
C. M.
,
Maggi
,
A.
,
Montemayor
,
L. C.
,
Comella
,
A.
,
Kochmann
,
D. M.
, and
Greer
,
J. R.
,
2017
, “
Reexamining the Mechanical Property Space of Three-Dimensional Lattice Architectures
,”
Acta Mater.
,
140
(
1
), pp.
424
432
.
27.
Evans
,
A. G.
,
He
,
M. Y.
,
Deshpande
,
V. S.
,
Hutchinson
,
J. W.
,
Jacobsen
,
A. J.
, and
Carter
,
W. B.
,
2010
, “
Concepts for Enhanced Energy Absorption Using Hollow Micro-Lattices
,”
Int. J. Impact Eng.
,
37
(
9
), pp.
947
959
. 10.1016/j.ijimpeng.2010.03.007
28.
Mines
,
R. A. W.
,
Tsopanos
,
S.
,
Shen
,
Y.
,
Hasan
,
R.
, and
McKown
,
S. T.
,
2013
, “
Drop Weight Impact Behaviour of Sandwich Panels With Metallic Micro Lattice Cores
,”
Int. J. Impact Eng.
,
60
(
1
), pp.
120
132
. 10.1016/j.ijimpeng.2013.04.007
29.
Zhang
,
L.
,
Feih
,
S.
,
Daynes
,
S.
,
Chang
,
S.
,
Wang
,
M. Y.
,
Wei
,
J.
, and
Lu
,
W. F.
,
2018
, “
Energy Absorption Characteristics of Metallic Triply Periodic Minimal Surface Sheet Structures Under Compressive Loading
,”
Addit. Manuf.
,
23
(
1
), pp.
505
515
. 10.1016/j.addma.2018.08.007
30.
Matlack
,
K. H.
,
Bauhofer
,
A.
,
Krödel
,
S.
,
Palermo
,
A.
, and
Daraio
,
C.
,
2016
, “
Composite 3D-Printed Metastructures for Low-Frequency and Broadband Vibration Absorption
,”
Proc. Natl. Acad. Sci. U.S.A.
,
113
(
30
), pp.
8386
8390
. 10.1073/pnas.1600171113
31.
Lim
,
Q. J.
,
Wang
,
P.
,
Koh
,
S. J. A.
,
Khoo
,
E. H.
, and
Bertoldi
,
K.
,
2015
, “
Wave Propagation in Fractal-Inspired Self-Similar Beam Lattices
,”
Appl. Phys. Lett.
,
107
(
22
), p.
221911
. 10.1063/1.4936564
32.
Christensen
,
J.
,
Kadic
,
M.
,
Kraft
,
O.
, and
Wegener
,
M.
,
2015
, “
Vibrant Times for Mechanical Metamaterials
,”
MRS Commun.
,
5
(
3
), pp.
453
462
. 10.1557/mrc.2015.51
33.
Gurtner
,
G.
, and
Durand
,
M.
,
2014
, “
Stiffest Elastic Networks
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
470
(
2164
), p.
20130611
. 10.1098/rspa.2013.0611
34.
Hyun
,
S.
, and
Torquato
,
S.
,
2002
, “
Optimal and Manufacturable Two-Dimensional, Kagomé-Like Cellular Solids
,”
J. Mater. Res.
,
17
(
01
), pp.
137
144
. 10.1557/JMR.2002.0021
35.
Kolpakov
,
A. G.
,
1985
, “
Determination of the Average Characteristics of Elastic Frameworks
,”
J. Appl. Math. Mech.
,
49
(
6
), pp.
739
745
. 10.1016/0021-8928(85)90011-5
36.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
. 10.1126/science.235.4792.1038
37.
Babaee
,
S.
,
Shim
,
J.
,
Weaver
,
J. C.
,
Chen
,
E. R.
,
Patel
,
N.
, and
Bertoldi
,
K.
,
2013
, “
3D Soft Metamaterials With Negative Poisson’s Ratio
,”
Adv. Mater.
,
25
(
36
), pp.
5044
5049
. 10.1002/adma.201301986
38.
Choi
,
J. B.
, and
Lakes
,
R. S.
,
1996
, “
Fracture Toughness of Re-Entrant Foam Materials With a Negative Poisson’s Ratio: Experiment and Analysis
,”
Int. J. Fract.
,
80
(
1
), pp.
73
83
. 10.1007/BF00036481
39.
Evans
,
K. E.
, and
Alderson
,
A.
,
2000
, “
Auxetic Materials: Functional Materials and Structures From Lateral Thinking!
,”
Adv. Mater.
,
12
(
9
), pp.
617
628
. 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
40.
Prall
,
D.
, and
Lakes
,
R. S.
,
1997
, “
Properties of a Chiral Honeycomb With a Poisson’s Ratio of −1
,”
Int. J. Mech. Sci.
,
39
(
3
), pp.
305
314
. 10.1016/S0020-7403(96)00025-2
41.
Alderson
,
A.
,
Alderson
,
K. L.
,
Attard
,
D.
,
Evans
,
K. E.
,
Gatt
,
R.
,
Grima
,
J. N.
,
Miller
,
W.
,
Ravirala
,
N.
,
Smith
,
C. W.
, and
Zied
,
K.
,
2010
, “
Elastic Constants of 3-, 4- and 6-Connected Chiral and Anti-Chiral Honeycombs Subject to Uniaxial In-Plane Loading
,”
Compos. Sci. Technol.
,
70
(
7
), pp.
1042
1048
. 10.1016/j.compscitech.2009.07.009
42.
Bacigalupo
,
A.
, and
Gambarotta
,
L.
,
2014
, “
Homogenization of Periodic Hexa- and Tetrachiral Cellular Solids
,”
Compos. Struct.
,
116
(
1
), pp.
461
476
. 10.1016/j.compstruct.2014.05.033
43.
Grima
,
J. N.
,
Gatt
,
R.
, and
Farrugia
,
P.-S.
,
2008
, “
On the Properties of Auxetic Meta-Tetrachiral Structures
,”
Phys. Status Solidi
,
245
(
3
), pp.
511
520
. 10.1002/pssb.200777704
44.
Lorato
,
A.
,
Innocenti
,
P.
,
Scarpa
,
F.
,
Alderson
,
A.
,
Alderson
,
K. L.
,
Zied
,
K. M.
,
Ravirala
,
N.
,
Miller
,
W.
,
Smith
,
C. W.
, and
Evans
,
K. E.
,
2010
, “
The Transverse Elastic Properties of Chiral Honeycombs
,”
Compos. Sci. Technol.
,
70
(
7
), pp.
1057
1063
. 10.1016/j.compscitech.2009.07.008
45.
Liu
,
X. N.
,
Huang
,
G. L.
, and
Hu
,
G. K.
,
2012
, “
Chiral Effect in Plane Isotropic Micropolar Elasticity and Its Application to Chiral Lattices
,”
J. Mech. Phys. Solids
,
60
(
11
), pp.
1907
1921
. 10.1016/j.jmps.2012.06.008
46.
Karathanasopoulos
,
N.
,
Dos Reis
,
F.
,
Reda
,
H.
, and
Ganghoffer
,
J.-F.
,
2018
, “
Computing the Effective Bulk and Normal to Shear Properties of Common Two-Dimensional Architectured Materials
,”
Comput. Mater. Sci.
,
154
(
1
), pp.
284
294
. 10.1016/j.commatsci.2018.07.044
47.
Cicala
,
G.
,
Recca
,
G.
,
Oliveri
,
L.
,
Perikleous
,
Y.
,
Scarpa
,
F.
,
Lira
,
C.
,
Lorato
,
A.
,
Grube
,
D. J.
, and
Ziegmann
,
G.
,
2012
, “
Hexachiral Truss-Core With Twisted Hemp Yarns: Out-of-Plane Shear Properties
,”
Compos. Struct.
,
94
(
12
), pp.
3556
3562
. 10.1016/j.compstruct.2012.05.020
48.
Dirrenberger
,
J.
,
Forest
,
S.
, and
Jeulin
,
D.
,
2012
, “
Elastoplasticity of Auxetic Materials
,”
Comput. Mater. Sci.
,
64
(
1
), pp.
57
61
. 10.1016/j.commatsci.2012.03.036
49.
Zhu
,
Y.
,
Wang
,
Z.-P.
, and
Poh
,
L. H.
,
2018
, “
Auxetic Hexachiral Structures With Wavy Ligaments for Large Elasto-Plastic Deformation
,”
Smart Mater. Struct.
,
27
(
5
), p.
055001
. 10.1088/1361-665X/aab33d
50.
Zhang
,
Y. H.
,
Qiu
,
X. M.
, and
Fang
,
D. N.
,
2008
, “
Mechanical Properties of Two Novel Planar Lattice Structures
,”
Int. J. Solids Struct.
,
45
(
13
), pp.
3751
3768
. 10.1016/j.ijsolstr.2007.10.005
51.
Tancogne-Dejean
,
T.
,
Gorji
,
M. B.
,
Pack
,
K.
, and
Roth
,
C. C.
,
2019
, “
The Third Sandia Fracture Challenge: Deterministic and Probabilistic Modeling of Ductile Fracture of Additively-Manufactured Material
,”
Int. J. Fract.
,
218
(
1–2
), pp.
209
229
.
52.
Danielsson
,
M.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
,
2002
, “
Three-Dimensional Micromechanical Modeling of Voided Polymeric Materials
,”
J. Mech. Phys. Solids
,
50
(
2
), pp.
351
379
. 10.1016/S0022-5096(01)00060-6
You do not currently have access to this content.