Abstract

We present the results of a computational study to investigate the performance of a nitinol honeycomb stent used in the management of an aortic atherosclerotic plaque with 70% stenosis. Such is considered severe and is associated with a higher risk of cardiovascular death. Traditionally, plaque size, composition, shape, and location are thought as important factors in determining the potential for the plaque to rupture (aka plaque vulnerability). The study looks at two plaque shapes and two plaque compositions. The stent used in the simulations is our own design. It compresses and expands due to nitinol’s superelastic property. The human aorta is represented by the Gasser–Ogden–Holzapfel (GOH) model, a sophisticated hyperelastic model which accounts for the dispersion of fibers present in the tissues. We proceed to investigate how the stent–aorta–plaque structure behaves under a physiological blood flow. Results indicate that the stent as designed can sustain realistic blood flow conditions and that hypocellular plaques are more prone to rupture, in agreement with results published in the literature. It also shows that neither plaque composition nor shape affect the wall shear stress (WSS). This study can be useful to surgeons to identify regions of stenotic aorta subjected to high stress, to select the appropriate stent diameter for aortae with plaques with various compositions and plaque shapes, and to decide on the optimal site for stent implantation.

References

1.
Lewis
,
S. J.
,
2009
, “
Prevention and Treatment of Atherosclerosis: A Practitioner’s Guide for 2008
,”
Am. J. Med.
,
122
(
1
), pp.
s38
s50
. 10.1016/j.amjmed.2008.10.016
2.
Fukumoto
,
Y.
,
Hiro
,
T.
,
Fujii
,
T.
,
Hashimoto
,
G.
,
Fujimura
,
T.
,
Yamada
,
J.
,
Okamura
,
T.
, and
Matsuzaki
,
M.
,
2008
, “
Localized Elevation of Shear Stress Is Related to Coronary Plaque Rupture
,”
J. Am. Coll. Cardiol.
,
51
(
6
), pp.
645
650
. 10.1016/j.jacc.2007.10.030
3.
Shiozaki
,
A. A.
,
Senra
,
T.
,
Morikawa
,
A. T.
,
Deus
,
D. F.
,
Paladino-Filho
,
A. T.
,
Pinto
,
I. M. F.
, and
Maranhao
,
R. C.
,
2016
, “
Treatment of Patients With Aortic Atherosclerotic Disease With Paclitaxel-Associated Lipid Nanoparticles
,”
Clinics (Sao Paulo)
,
71
(
8
), pp.
435
439
. 10.6061/clinics/2016(08)05
4.
Shemesh
,
D.
,
Goldin
,
I.
,
Zaghal
,
I.
,
Berlowitz
,
D.
,
Raveh
,
D.
, and
Olsha
,
O.
,
2008
, “
Angioplasty With Stent Graft Versus Bare Stent for Recurrent Cephalic Arch Stenosis in Autogenous Arteriovenous Access for Hemodialysis: A Prospective Randomized Clinical Trial
,”
J. Vasc. Surg.
,
48
(
6
), pp.
1524
1531
. 10.1016/j.jvs.2008.07.071
5.
Karnabatidis
,
D.
,
Kitrou
,
P.
,
Spiliopoulos
,
S.
,
Katsanos
,
K.
,
Diamantopoulos
,
A.
,
Christeas
,
N.
, and
Siablis
,
D.
,
2013
, “
Stent-Grafts Versus Angioplasty and/or Bare Metal Stents for Failing Arteriovenous Grafts: A Cross-Over Longitudinal Study
,”
J. Nephrol.
,
26
(
2
), pp.
389
95
. 10.5301/jn.5000161
6.
Timmins
,
L. H.
,
Miller
,
M. W.
,
Clubb
,
F. J.
, and
Moore
,
J. E.
,
2011
, “
Increased Artery Wall Stress Post-Stenting Leads to Greater Intimal Thickening
,”
Lab. Invest.
,
91
, pp.
955
967
. 10.1038/labinvest.2011.57
7.
Azaouzi
,
M.
,
Makradi
,
A.
, and
Belouettar
,
S.
,
2012
, “
Deployment of a Self-Expanding Stent Inside an Artery: A Finite Element Analysis
,”
Mat. Des.
,
41
, pp.
410
420
. 10.1016/j.matdes.2012.05.019
8.
Roig
,
C. S.
,
de Winther
,
M. P.
,
Weber
,
C.
,
Daemen
,
M. J.
,
Lutgens
,
E.
, and
Soehnlein
,
O.
,
2014
, “
Atherosclerotic Plaque Destabilization Mechanisms, Models, and Therapeutic Strategies
,”
Circ. Res.
,
114
(
1
), pp.
214
226
. 10.1161/CIRCRESAHA.114.302355
9.
Abaqus version 6.13
,
2013
,
Analysis User’s Manual
,
Dassault Systems Simulia Corp
,
MA, USA
.
10.
Migliavacca
,
F.
,
Petrini
,
L.
,
Massarotti
,
P.
,
Schievano
,
S.
,
Auricchio
,
F.
, and
Dubini
,
G.
,
2004
, “
Stainless and Shape Memory Alloy Coronary Stents: A Computational Study on the Interaction With the Vascular Wall
,”
Biomech. Model. Mechanobiol.
,
2
, pp.
205
217
. 10.1007/s10237-004-0039-6
11.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P. J.
,
2005
, “
Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis
,”
J. Biomech.
,
38
(
8
), pp.
1574
1581
. 10.1016/j.jbiomech.2004.07.022
12.
Bedoya
,
J.
,
Meyer
,
C. A.
,
Timmins
,
L. H.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
,
2006
, “
Effects of Stent Design Parameters on Normal Artery Wall Mechanics
,”
J. Biomech.
,
128
(
5
), pp.
757
765
. 10.1115/1.2246236
13.
Kiousis
,
D. E.
,
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2007
, “
A Numerical Model to Study the Interaction of Vascular Stents With Human Atherosclerotic Lesions
,”
Ann. Biomed. Eng.
,
35
, pp.
1857
1869
. 10.1007/s10439-007-9357-z
14.
Timmins
,
L. H.
,
Meyer
,
C. A.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
,
2008
, “
Mechanical Modeling of Stents Deployed in Tapered Arteries
,”
Ann. Biomed. Eng.
,
36
, pp.
2042
2050
. 10.1007/s10439-008-9582-0
15.
Pericevic
,
I.
,
Lally
,
C.
,
Toner
,
D.
, and
Kelly
,
D. J.
,
2009
, “
The Influence of Plaque Composition on Underlying Arterial Wall Stress During Stent Expansion: The Case for Lesion-Specific Stents
,”
Med. Eng. Phys.
,
31
(
4
), pp.
428
433
. 10.1016/j.medengphy.2008.11.005
16.
Conway
,
C.
,
McGarry
,
J. P.
, and
McHugh
,
P. E.
,
2014
, “
Modelling of Atherosclerotic Plaque for Use in a Computational Test-Bed for Stent Angioplasty
,”
Ann. Biomed. Eng.
,
42
(
12
), pp.
2425
2439
. 10.1007/s10439-014-1107-4
17.
Karimi
,
A.
,
Navidbakhsh
,
M.
,
Yamada
,
H.
, and
Razaghi
,
R.
,
2014
, “
A Finite Element Study of Balloon Expandable Stent for Plaque and Arterial Wall Vulnerability Assessment
,”
J. Appl. Phys.
,
116
, p.
044701
. 10.1063/1.4891019
18.
Morlacchi
,
S.
,
Pennati
,
G.
,
Petrini
,
L.
,
Dubini
,
G.
, and
Migliavacca
,
F.
,
2014
, “
Influence of Plaque Calcifications on Coronary Stent Fracture: A Numerical Fatigue Life Analysis Including Cardiac Wall Movement
,”
J. Biomech.
,
47
(
4
), pp.
899
907
. 10.1016/j.jbiomech.2014.01.007
19.
Schiavone
,
A.
,
Zhao
,
L. G.
, and
Abdel-Wahab
,
A. A.
,
2014
, “
Effects of Material, Coating, Design and Plaque Composition on Stent Deployment Inside a Stenotic Artery—Finite Element Simulation
,”
Mater. Sci. Eng. C
,
42
(
1
), pp.
479
488
. 10.1016/j.msec.2014.05.057
20.
Welch
,
T. R.
,
Eberhart
,
R. C.
,
Banerjee
,
S.
, and
Chuong
,
C. -J.
,
2016
, “
Mechanical Interaction of an Expanding Coiled Stent With a Plaque-Containing Arterial Wall: A Finite Element Analysis
,”
Cardiovasc. Eng. Technol.
,
7
, pp.
58
68
. 10.1007/s13239-015-0249-3
21.
Syaifudin
,
A.
,
Ariatedja
,
J. B.
,
Kaelani
,
Y.
,
Takeda
,
R.
, and
Sasaki
,
K.
,
2019
, “
Vulnerability Analysis on the Interaction Between Asymmetric Stent and Arterial Layer
,”
Bio-Med. Mater. Eng.
,
30
(
3
), pp.
309
322
. 10.3233/BME-191054
22.
Wei
,
L.
,
Chen
,
Q.
, and
Li
,
Z.
,
2019
, “
Influences of Plaque Eccentricity and Composition on the Stent–Plaque–Artery Interaction During Stent Implantation
,”
Biomech. Model. Mechanobiol.
,
18
, pp.
45
46
. 10.1007/s10237-018-1066-z
23.
Alimohammadi
,
M.
,
Sherwood
,
J. M.
,
Karimpour
,
M.
,
Agu
,
O.
,
Balabani
,
S.
, and
Zuccarini
,
V. D.
,
2015
, “
Aortic Dissection Simulation Models for Clinical Support: Fluid–Structure Interaction Vs. Rigid Wall Models
,”
Biomed. Eng. Online
,
14
(
1
), pp.
14
34
. 10.1186/s12938-015-0032-6
24.
Karimi
,
A.
,
Navidbakhsh
,
M.
,
Faghihi
,
S.
,
Shojaei
,
A.
, and
Hassani
,
K.
,
2012
, “
A Finite Element Investigation on Plaque Vulnerability in Realistic Healthy and Atherosclerotic Human Coronary Arteries
,”
J. Eng. Med.
,
227
(
2
), pp.
148
161
. 10.1177/0954411912461239
25.
Noble
,
C.
,
Carlson
,
K. D.
,
Neumann
,
E.
,
Dragomir-Daescu
,
D.
,
Erdemir
,
A.
,
Lerman
,
A.
, and
Young
,
M.
,
2020
, “
Patient Specific Characterization of Artery and Plaque Material Properties in Peripheral Artery Disease
,”
J. Mech. Behav. Biomed. Mater.
,
101
, p.
103453
. 10.1016/j.jmbbm.2019.103453
26.
Jayendiran
,
R.
,
Nour
,
B. M.
, and
Ruimi
,
A.
,
2020
, “
A Fluid–Structure Interaction Analysis of Anisotropic Dacron Fabric Used for Aortic Replacement
,”
J. Fluids. Struct.
,
97
, p.
103108
. 10.1016/j.jfluidstructs.2020.103108
27.
Amabili
,
M.
,
Karazis
,
K.
,
Mongrain
,
R.
,
Paidoussis
,
M. P.
, and
Cartier
,
R.
,
2012
, “
A Three-Layer Model for Buckling of a Human Aortic Segment Under Specific Flow-Pressure Conditions
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
5
), pp.
495
512
. 10.1002/cnm.1484
28.
Gameraddin
,
M.
,
2019
, “
Normal Abdominal Aorta Diameter on Abdominal Sonography in Healthy Asymptomatic Adults: Impact of Age and Gender
,”
J. Rad. Res. Appl. Sci.
,
12
(
1
), pp.
186
191
. 10.1080/16878507.2019.1617553
29.
Karimi
,
A.
,
Navidbakhsh
,
M.
,
Yamada
,
H.
, and
Razaghi
,
R.
,
2014
, “
A Nonlinear Finite Element Simulation of Balloon Expandable Stent for Assessment of Plaque Vulnerability Inside a Stenotic Artery
,”
Med. Biol. Eng. Comput.
,
52
, pp.
589
599
. 10.1007/s11517-014-1163-9
30.
Shanahan
,
C.
,
Tofail
,
S. A. M.
, and
Tiernan
,
P.
,
2017
, “
Viscoelastic Braided Stent: Finite Element Modelling and Validation of Crimping Behaviour
,”
Mat. Des.
,
121
(
5
), pp.
143
153
. 10.1016/j.matdes.2017.02.044
31.
Cabrera
,
M. S.
,
Oomens
,
C. W. J.
, and
Baaijens
,
F. P. T.
,
2017
, “
Understanding the Requirements of Self-Expandable Stents for Heart Valve Replacement: Radial Force, Hoop Force and Equilibrium
,”
J. Mech. Behav. Biomed. Mater.
,
68
, pp.
252
264
. 10.1016/j.jmbbm.2017.02.006
32.
Kleinstreuer
,
C.
,
Li
,
Z.
,
Basciano
,
C. A.
,
Seelecke
,
S.
, and
Farber
,
M. A.
,
2008
, “
Computational Mechanics of Nitinol Stent Grafts
,”
J. Biomech.
,
41
(
11
), pp.
2370
2378
. 10.1016/j.jbiomech.2008.05.032
33.
Jayendiran
,
R.
,
Nour
,
B. M.
, and
Ruimi
,
A.
,
2018
, “
Dacron Graft as Replacement to Dissected Aorta: A Three-Dimensional Fluid–Structure Interaction Analysis
,”
J. Mech. Behav. Biomed. Mater.
,
78
, pp.
329
341
. 10.1016/j.jmbbm.2017.11.029
34.
Jayendiran
,
R.
,
Nour
,
B. M.
, and
Ruimi
,
A.
,
2019
, “
Computational Analysis of Nitinol Stent-Graft for Endovascular Aortic Repair (EVAR) of Abdominal Aortic Aneurysm (AAA): Crimping, Sealing and Fluid–Structure Interaction (FSI)
,”
Int. J. Cardiol.
,
304
(
1
), pp.
164
171
. 10.1016/j.ijcard.2019.11.091
35.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York, NY
, p.
568
.
36.
Lowry
,
O. H.
,
Gilligan
,
D. R.
, and
Katersky
,
E. M.
,
1941
, “
The Determination of Collagen and Elastin in Tissues, With Results Obtained in Various Normal Tissues From Diffierent Species
,”
J. Biol. Chem.
,
139
, pp.
795
804
.
37.
Neuman
,
R. E.
, and
Logan
,
M. A.
,
1950
, “
The Determination of Collagen and Elastin in Tissues
,”
J. Biol. Chem.
,
186
, pp.
549
556
.
38.
Basser
,
P. J.
,
Pajevic
,
S.
,
Pierpaoli
,
C.
,
Duda
,
J.
, and
Aldroubi
,
A.
,
2000
, “
In Vivo Fiber Tractography Using DT-MRI Data
,”
Magn. Reson. Med.
,
44
(
4
), pp.
625
632
. 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
39.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
, pp.
1
48
. 10.1023/A:1010835316564
40.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
,
2001
, “
A Viscoelastic Model for Fiber-Reinforced Composites at Finite Strains: Continuum Basis, Computational Aspects and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
34
), pp.
4379
4403
. 10.1016/S0045-7825(00)00323-6
41.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
. 10.1098/rsif.2005.0073
42.
Holzapfel
,
G. A.
,
2006
, “
Determination of Material Models for Arterial Walls From Uniaxial Extension Tests and Histological Structure
,”
J. Theor. Biol.
,
238
(
2
), pp.
290
302
. 10.1016/j.jtbi.2005.05.006
43.
Jankowska
,
M. A.
,
Bartkowiak-Jowsa
,
M.
, and
Bedzinski
,
R.
,
2015
, “
Experimental and Constitutive Modeling Approaches for a Study of Biomechanical Properties of Human Coronary Arteries
,”
J. Mech. Behav. Biomed. Mater.
,
50
, pp.
1
12
. 10.1016/j.jmbbm.2015.05.021
44.
Amabili
,
M.
,
Balasubramanian
,
P.
,
Bozzo
,
I.
,
Breslavsky
,
I.
, and
Ferrari
,
G.
,
2019
, “
Layer-Specific Hyperelastic and Viscoelastic Characterization of Human Descending Thoracic Aortas
,”
J. Mech. Behav. Biomed. Mater.
,
99
, pp.
27
46
. 10.1016/j.jmbbm.2019.07.008
45.
Karimi
,
A.
,
Navidbakhsh
,
M.
,
Shojaei
,
A.
,
Hassani
,
K.
, and
Faghihi
,
S.
,
2014
, “
Study of Plaque Vulnerability in Coronary Artery Using Mooney-Rivlin Model: A Combination of Finite Element and Experimental Method
,”
Biomed. Eng.: Appl. Basis Commun.
,
26
(
1
), p.
1450013
. 10.4015/S1016237214500136
46.
Jayendiran
,
R.
,
Nour
,
B. M.
, and
Ruimi
,
A.
,
2018
, “
Fluid–Structure Interaction (FSI) Analysis of Stent-Graft for Aortic Endovascular Aneurysm Repair (EVAR): Material and Structural Considerations
,”
J. Mech. Behav. Biomed. Mater.
,
87
, pp.
95
110
. 10.1016/j.jmbbm.2018.07.020
47.
Auricchio
,
F.
,
Taylor
,
R. L.
, and
Lubliner
,
J.
,
1997
, “
Shape Memory Alloys: Macromodelling and Numerical Simulations of the Superelastic Behavior
,”
Comput. Methods Appl. Mech. Eng.
,
146
(
3–4
), pp.
281
312
. 10.1016/S0045-7825(96)01232-7
48.
Weisbecker
,
H.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Layer-Specific Damage Experiments and Modeling of Human Thoracic and Abdominal Aortas With Non-atherosclerotic Intimal Thickening
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
93
106
. 10.1016/j.jmbbm.2012.03.012
49.
Akhter
,
T.
,
2012
, “
Role of Compressibility and Slip in Blood Flow Through a Local Construction
,” Master’s thesis,
Ryerson University
,
Toronto
.
50.
Vasava
,
P.
,
Jalali
,
P.
,
Dabagh
,
M.
, and
Kolari
,
P. J.
,
2012
, “
Finite Element Modelling of Pulsatile Blood Flow in Idealized Model of Human Aortic Arch: Study of Hypotension and Hypertension
,”
Comput. Math. Methods Med.
,
2012
, p.
861837
. 10.1155/2012/861837
51.
Tubaldi
,
E.
,
Amabili
,
M.
, and
Paidoussis
,
M. P.
,
2017
, “
Nonlinear Dynamics of Shells Conveying Pulsatile Flow With Pulse-Wave Propagation. Theory and Numerical Results for a Single Harmonic Pulsation
,”
J. Sound Vib.
,
396
(
26
), pp.
217
245
. 10.1016/j.jsv.2017.01.044
52.
Martino
,
E. S. D.
,
Guadangi
,
G.
,
Fumero
,
A.
,
Ballerini
,
G.
,
Spirito
,
R.
,
Boglioli
,
P.
, and
Redaelli
,
A.
,
2001
, “
Fluid–Structure Interaction Within Realistic Three-Dimensional Models of the Aneurysmatic Aorta as a Guidance to Assess the Risk of Rupture of the Aneurysm
,”
Med. Eng. Phys.
,
23
(
9
), pp.
647
655
. 10.1016/S1350-4533(01)00093-5
53.
Tubaldi
,
E.
,
Amabili
,
M.
, and
Paidoussis
,
M. P.
,
2016
, “
Fluid–Structure Interaction for Nonlinear Response of Shells Conveying Pulsatile Flow
,”
J. Sound Vib.
,
371
(
9
), pp.
252
376
. 10.1016/j.jsv.2016.01.024
54.
Urbano
,
M. F.
,
Cadelli
,
A.
,
Sczerzenie
,
F.
,
Luccarelli
,
P.
,
Beretta
,
S.
, and
Coda
,
A.
,
2015
, “
Inclusions Size-Based Fatigue Life Prediction Model of NiTi Alloy for Biomedical Applications
,”
Shape Mem. Superelasticity
,
1
(
2
), pp.
240
251
. 10.1007/s40830-015-0016-1
55.
Jalaeefar
,
A.
, and
Asgarian
,
B.
,
2013
, “
Experimental Investigation of Mechanical Properties of Nitinol, Structural Steel, and Their Hybrid Component
,”
J. Mater. Civ. Eng.
,
25
(
10
), pp.
1498
1505
.
56.
Callaghan
,
F. M.
, and
Grieve
,
S. M.
,
2018
, “
Normal Patterns of Thoracic Aortic Wall Shear Stress Measured Using Four-Dimensional Flow MRI in a Large Population
,”
Am. J. Phys.
,
315
(
5
), pp.
H1174
H1181
. 10.1152/ajpheart.00017.2018
57.
Qiu
,
T.
,
Jin
,
G.
,
Xing
,
H.
, and
Lu
,
H.
,
2017
, “
Association Between Hemodynamics, Morphology, and Rupture Risk of Intracranial Aneurysms: A Computational Fluid Modeling Study
,”
Neurol. Sci.
,
38
, pp.
1009
1018
. 10.1007/s10072-017-2904-y
58.
Amabili
,
M.
,
Balasubramanian
,
P.
, and
Breslavsky
,
I.
,
2019
, “
Anisotropic Fractional Viscoelastic Constitutive Models for Human Descending Thoracic Aortas
,”
J. Mech. Behav. Biomed. Mater.
,
99
, pp.
186
197
. 10.1016/j.jmbbm.2019.07.010
59.
Amabili
,
M.
,
Balasubramanian
,
P.
,
Bozzo
,
I.
,
Breslavsky
,
I.
,
Ferrari
,
G.
,
Franchini
,
G.
,
Giovanniello
,
F.
, and
Pogue
,
C.
,
2020
, “
Nonlinear Dynamics of Human Aortas for Material Characterization
,”
Phys. Rev. X
,
10
(
1
), p.
011015
. 10.1103/physrevx.10.011015
60.
Breslavsky
,
I. D.
, and
Amabili
,
M.
,
2018
, “
Nonlinear Model of Human Descending Thoracic Aortic Segments With Residual Stresses
,”
Biomech. Model. Mechanobiol.
,
17
, pp.
1839
1855
. 10.1007/s10237-018-1060-5
61.
Topoleski
,
L.
,
Salunke
,
N.
,
Humphrey
,
J.
, and
Mergner
,
W.
,
1997
, “
Composition- and History-Dependent Radial Compressive Behavior of Human Atherosclerotic Plaque
,”
J. Biomed. Mater. Res.
,
35
(
1
), pp.
117
127
. 10.1002/(SICI)1097-4636(199704)35:1<117::AID-JBM12>3.0.CO;2-G
62.
Salunke
,
N.
,
Humphrey
,
L. T. J.
, and
Mergner
,
W.
,
2001
, “
Compressive Stress-Relaxation of Human Atherosclerotic Plaque
,”
J. Biomed. Mater. Res.
,
55
(
2
), pp.
236
241
. 10.1002/1097-4636(200105)55:2<236::AID-JBM1010>3.0.CO;2-F
63.
Karimi
,
A.
,
Navidbakhsh
,
M.
, and
Yousefi
,
H.
,
2014
, “
Mechanical Properties of Polyvinyl Alcohol Sponge Under Different Strain Rates
,”
Int. J. Mater. Res.
,
105
(
4
), pp.
404
408
. 10.3139/146.111036
64.
Karimi
,
A.
, and
Navidbakhsh
,
M.
,
2014
, “
Mechanical Properties of PVA Material for Tissue Engineering Applications
,”
Mater. Tech. Adv. Perform Mater.
,
29
(
2
), pp.
90
100
. 10.1179/1753555713y.0000000115
You do not currently have access to this content.