Abstract

This work studies elastic wave propagation in strongly nonlinear periodic systems and its active control with specific attention to an infinite mass-in-mass lattice. Piezoelectric materials are applied to it to provide active control loads to manipulate band structures of the lattice. Governing equations of the active mass-in-mass lattice with cubic nonlinearities are established. The control loads are modeled by using linear piezoelectric springs. Due to phase differences among vibrations of different cells during wave propagation, a series of delay functions with different delays are used to represent the steady-state of a traveling wave. The incremental harmonic balance method for delay dynamic systems is employed in this case to calculate periodic solutions of the lattice. The fast Fourier transform is employed to construct the Jacobian matrix of the Newton–Raphson iteration to avoid a large number of Galerkin integrations, and thus, the efficiency is significantly improved. Amplitude-dependent dispersion curves are calculated using results of the linearized system as an initial guess for the iteration. The results are compared with existing results in the literature, which demonstrates that the present method is efficient for wave propagation analysis of strongly nonlinear structures. Effects of nonlinearities, the mass ratio, and different control actions on band structures of the mass-in-mass lattice are investigated through a comprehensive parametric study. Numerical results show that the band structures can be influenced by nonlinearities of the lattice. New stopbands and critical wave numbers can be created by the control actions.

References

1.
Huang
,
K.-X.
,
Shui
,
G.-S.
,
Wang
,
Y.-Z.
, and
Wang
,
Y.-S.
,
2020
, “
Meta-Arrest of a Fast Propagating Crack in Elastic Wave Metamaterials With Local Resonators
,”
Mech. Mater.
,
148
, p.
103497
. 10.1016/j.mechmat.2020.103497
2.
Baz
,
A.
,
2001
, “
Active Control of Periodic Structures
,”
ASME J. Vib. Acoust.
,
123
(
4
), pp.
472
479
. 10.1115/1.1399052
3.
Cha
,
J.
, and
Daraio
,
C.
,
2018
, “
Electrical Tuning of Elastic Wave Propagation in Nanomechanical Lattices at MHz Frequencies
,”
Nat. Nanotechnol.
,
13
(
11
), pp.
1016
1020
. 10.1038/s41565-018-0252-6
4.
Zhu
,
H. F.
, and
Semperlotti
,
F.
,
2013
, “
Metamaterial Based Embedded Acoustic Filters for Structural Applications
,”
AIP Adv.
,
3
(
9
), p.
092121
. 10.1063/1.4822157
5.
Kafesaki
,
M.
,
Sigalas
,
M. M.
, and
Garcia
,
N.
,
2000
, “
Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials
,”
Phys. Rev. Lett.
,
85
(
19
), pp.
4044
4047
. 10.1103/PhysRevLett.85.4044
6.
Casadei
,
F.
,
Delpero
,
T.
,
Bergamini
,
A.
,
Ermanni
,
P.
, and
Ruzzene
,
M.
,
2012
, “
Piezoelectric Resonator Arrays for Tunable Acoustic Waveguides and Metamaterials
,”
J. Appl. Phys.
,
112
(
6
), p.
064902
. 10.1063/1.4752468
7.
Huang
,
C.-Y.
,
Sun
,
J.-H.
, and
Wu
,
T.-T.
,
2010
, “
A Two-Port ZnO/Silicon Lamb Wave Resonator Using Phononic Crystals
,”
Phys. Rev. Lett.
,
97
(
3
), p.
031913
. 10.1063/1.3467145
8.
Jensen
,
J. S.
,
2003
, “
Phononic Band Gaps and Vibrations in One- and Two-Dimensional Mass-Spring Structures
,”
J. Sound Vib.
,
266
(
5
), pp.
1053
1078
. 10.1016/S0022-460X(02)01629-2
9.
Wang
,
G.
,
Yu
,
D.
,
Wen
,
J.
,
Liu
,
Y.
, and
Wen
,
X.
,
2004
, “
One-Dimensional Phononic Crystals With Locally Resonant Structures
,”
Phys. Lett. A
,
327
(
5–6
), pp.
512
521
. 10.1016/j.physleta.2004.05.047
10.
Huang
,
G. L.
, and
Sun
,
C. T.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031003
. 10.1115/1.4000784
11.
Xu
,
X.
,
Barnhart
,
M. V.
,
Li
,
X.
,
Chen
,
Y.
, and
Huang
,
G. L.
,
2019
, “
Tailoring Vibration Suppression Bands With Hierarchical Metamaterials Containing Local Resonators
,”
J. Sound Vib.
,
442
(
3
), pp.
237
248
. 10.1016/j.jsv.2018.10.065
12.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
. 10.1016/j.ijengsci.2008.12.007
13.
Lazarov
,
B. S.
, and
Jensen
,
J. S.
,
2007
, “
Low-Frequency Band Gaps in Chains With Attached Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
42
(
10
), pp.
1186
1193
. 10.1016/j.ijnonlinmec.2007.09.007
14.
Fu
,
C.
,
Wang
,
B.
,
Zhao
,
T.
, and
Chen
,
C. Q.
,
2018
, “
High Efficiency and Broadband Acoustic Diodes
,”
Appl. Phys. Lett.
,
112
(
5
), p.
051902
. 10.1063/1.5020698
15.
Boechler
,
N.
,
Theocharis
,
G.
,
Job
,
S.
,
Kevrekidis
,
P. G.
,
Porter
,
M. A.
, and
Daraio
,
C.
,
2010
, “
Discrete Breathers in One-Dimensional Diatomic Granular Crystals
,”
Phys. Rev. Lett.
,
104
(
24
), p.
244302
. 10.1103/PhysRevLett.104.244302
16.
Huang
,
G.
,
Shi
,
Z.-P.
, and
Xu
,
Z.
,
1993
, “
Asymmetric Intrinsic Localized Modes in a Homogeneous Lattice With Cubic and Quartic Anharmonicity
,”
Phys. Rev. B
,
47
(
21
), pp.
14561
14564
. 10.1103/PhysRevB.47.14561
17.
Phani
,
A. S.
, and
Hussein
,
M. I.
,
2013
, “
Analysis of Damped Bloch Waves by the Rayleigh Perturbation Method
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041014
. 10.1115/1.4024397
18.
Manktelow
,
K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2011
, “
Multiple Scales Analysis of Wave-Wave Interactions in a Cubically Nonlinear Monoatomic Chain
,”
Nonlinear Dyn.
,
63
(
1–2
), pp.
193
203
. 10.1007/s11071-010-9796-1
19.
Fronk
,
M. D.
, and
Leamy
,
M. J.
,
2017
, “
Higher-Order Dispersion, Stability, and Waveform Invariance in Nonlinear Monoatomic and Diatomic Systems
,”
AMSE J. Vib. Acoust.
,
139
(
5
), p.
051003
. 10.1115/1.4036501
20.
Fronk
,
M. D.
, and
Leamy
,
M. J.
,
2019
, “
Internally Resonant Wave Energy Exchange in Weakly Nonlinear Lattices and Metamaterials
,”
Phys. Rev. E
,
100
(
3
), p.
032213
. 10.1103/PhysRevE.100.032213
21.
Cai
,
C. W.
,
Chan
,
H. C.
, and
Cheung
,
Y. K.
,
1997
, “
Localized Modes in Periodic Systems With Nonlinear Disorders
,”
ASME J. Appl. Mech.
,
64
(
4
), pp.
940
945
. 10.1115/1.2789003
22.
Wang
,
Y. Z.
, and
Wang
,
Y. S.
,
2018
, “
Active Control of Elastic Wave Propagation in Nonlinear Phononic Crystals Consisting of Diatomic Lattice Chain
,”
Wave Motion
,
78
, pp.
1
8
. 10.1016/j.wavemoti.2017.12.009
23.
Zhou
,
W. J.
,
Li
,
X. P.
,
Wang
,
Y. S.
,
Chen
,
W. Q.
, and
Huang
,
G. L.
,
2018
, “
Spectro-Spatial Analysis of Wave Packet Propagation in Nonlinear Acoustic Metamaterials
,”
J. Sound Vib.
,
413
, pp.
250
269
. 10.1016/j.jsv.2017.10.023
24.
Narisetti
,
R. K.
,
Ruzzene
,
M.
, and
Leamy
,
M. J.
,
2012
, “
Study of Wave Propagation in Strongly Nonlinear Periodic Lattices Using a Harmonic Balance Approach
,”
Wave Motion
,
49
(
2
), pp.
394
410
. 10.1016/j.wavemoti.2011.12.005
25.
Fang
,
X.
,
Wen
,
J.
,
Yin
,
J.
,
Yu
,
D.
, and
Xiao
,
Y.
,
2016
, “
Broadband and Tunable One-Dimensional Strongly Nonlinear Acoustic Metamaterials: Theoretical Study
,”
Phys. Rev. E
,
94
(
5
), p.
052206
. 10.1103/PhysRevE.94.052206
26.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1981
, “
Amplitude Incrementa Variational Principe for Nonlinear Vibration of Elastic Systems
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
959
964
. 10.1115/1.3157762
27.
Huang
,
J. L.
,
Su
,
R. K. L.
,
Li
,
W. H.
, and
Chen
,
S. H.
,
2011
, “
Stability and Bifurcation of an Axially Moving Beam Tuned to Three-to-One Internal Resonances
,”
J. Sound Vib.
,
330
(
3
), pp.
471
485
. 10.1016/j.jsv.2010.04.037
28.
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2017
, “
A New Incremental Harmonic Balance Method With Two Time Scales for Quasi-Periodic Motions of an Axially Moving Beam With Internal Resonance Under Single-Tone External Excitation
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021010
. 10.1115/1.4035135
29.
Ju
,
R.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2020
, “
An Efficient Galerkin Averaging-Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Tensor Contraction
,”
ASME J. Vib. Acoust.
,
142
(
6
), p.
061011
. 10.1115/1.4047235
30.
Wei
,
L. S.
,
Wang
,
Y. Z.
, and
Wang
,
Y. S.
,
2020
, “
Nonreciprocal Transmission of Nonlinear Elastic Wave Metamaterials by Incremental Harmonic Balance Method
,”
Int. J. Mech. Sci.
,
173
, p.
105433
. 10.1016/j.ijmecsci.2020.105433
31.
Wang
,
X. F.
,
Zhu
,
W. D.
, and
Liu
,
M.
,
2020
, “
Steady-State Periodic Solutions of the Nonlinear Wave Propagation Problem of a One-Dimensional Lattice Using a New Methodology With an Incremental Harmonic Balance Method That Handles Time Delays
,”
Nonlinear Dyn.
,
100
(
2
), pp.
1457
1467
. 10.1007/s11071-020-05535-4
32.
Wang
,
X. F.
,
Zhu
,
W. D.
, and
Zhao
,
X.
,
2019
, “
An Incremental Harmonic Balance Method With a General Formula of Jacobian Matrix and a Direct Construction Method in Stability Analysis of Periodic Responses of General Nonlinear Delay Differential Equations
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061011
. 10.1115/1.4042836
You do not currently have access to this content.