Abstract

Due to having a single atom layer, two-dimensional (2D) materials represented by graphene monolayers exhibit unique and excellent mechanical properties, such as ultrahigh moduli and strengths. A large number of experiments and atomistic simulations have demonstrated nonlinear stress–strain responses. However, there is no theoretical model that analytically describes the relationships between nonlinear mechanical properties and interatomic interaction parameters of 2D materials. Here, we developed a nonlinear stick-spiral model for four typical 2D materials (including graphene, γ-graphyne, β-graphyne, and hexagonal boron nitride) based on a molecular mechanics model. By using the perturbation method, we derived a series of analytical expressions for nonlinear stress–strain relationships and elastic constants of these 2D materials under uniaxial tension along the zigzag and armchair directions. Our analytic models indicated that both Young’s moduli and Poisson’s ratios of these 2D materials are isotropic and dominate the linear elastic deformation, while their third-order moduli are orientation-dependent and essentially characterize the nonlinear stress–strain responses. The nonlinear stress–strain relationships, elastic constants, and atomic behaviors (such as bond elongation and bond angle variation during deformation) predicted from our analytical models are in good agreement with those from atomistic simulations and previous experiments. Our analytical models further demonstrated that the mechanical properties and behaviors of 2D materials are linked with their bonding and atomic structures (from a quantitative perspective) and are mainly determined by stiffnesses for bond stretching, angle variation, and bond lengths. Our current study provides an effective and accurate analytical approach for investigating the nonlinear behaviors of 2D materials.

References

1.
Akinwande
,
D.
,
Brennan
,
C. J.
,
Bunch
,
J. S.
,
Egberts
,
P.
,
Felts
,
J. R.
,
Gao
,
H.
,
Huang
,
R.
,
Kim
,
J.-S.
,
Li
,
T.
,
Li
,
Y.
,
Liechti
,
K. M.
,
Lu
,
N.
,
Park
,
H. S.
,
Reed
,
E. J.
,
Wang
,
P.
,
Yakobson
,
B. I.
,
Zhang
,
T.
,
Zhang
,
Y.-W.
,
Zhou
,
Y.
, and
Zhu
,
Y.
,
2017
, “
A Review on Mechanics and Mechanical Properties of 2D Materials-Graphene and Beyond
,”
Extreme Mech. Lett.
,
13
, pp.
42
77
.
2.
Gupta
,
A.
,
Sakthivel
,
T.
, and
Seal
,
S.
,
2015
, “
Recent Development in 2D Materials Beyond Graphene
,”
Prog. Mater. Sci.
,
73
, pp.
44
126
.
3.
Li
,
Y.
,
Xu
,
L.
,
Liu
,
H.
, and
Li
,
Y.
,
2014
, “
Graphdiyne and Graphyne: From Theoretical Predictions to Practical Construction
,”
Chem. Soc. Rev.
,
43
(
8
), pp.
2572
2586
.
4.
Mannix
,
A. J.
,
Kiraly
,
B.
,
Hersam
,
M. C.
, and
Guisinger
,
N. P.
,
2017
, “
Synthesis and Chemistry of Elemental 2D Materials
,”
Nat. Rev. Chem.
,
1
(
2
), pp.
1
14
.
5.
Warner
,
J. H.
,
Rümmeli
,
M. H.
,
Bachmatiuk
,
A.
, and
Büchner
,
B.
,
2010
, “
Atomic Resolution Imaging and Topography of Boron Nitride Sheets Produced by Chemical Exfoliation
,”
ACS Nano
,
4
(
3
), pp.
1299
1304
.
6.
Wei
,
Y.
, and
Yang
,
R.
,
2019
, “
Nanomechanics of Graphene
,”
Natl. Sci. Rev.
,
6
(
2
), pp.
324
348
.
7.
Zhang
,
T.
,
Li
,
X.
, and
Gao
,
H.
,
2015
, “
Fracture of Graphene: A Review
,”
Int. J. Fracture
,
196
(
1–2
), pp.
1
31
.
8.
Bolotin
,
K. I.
,
Sikes
,
K. J.
,
Jiang
,
Z.
,
Klima
,
M.
,
Fudenberg
,
G.
,
Hone
,
J.
,
Kim
,
P.
, and
Stormer
,
H. L.
,
2008
, “
Ultrahigh Electron Mobility in Suspended Graphene
,”
Solid State Commun.
,
146
(
9–10
), pp.
351
355
.
9.
Ghosh
,
S.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Pokatilov
,
E. P.
,
Nika
,
D. L.
,
Balandin
,
A. A.
,
Bao
,
W.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits
,”
Appl. Phys. Lett.
,
92
(
15
), p.
151911
.
10.
Gu
,
X.
,
Wei
,
Y.
,
Yin
,
X.
,
Li
,
B.
, and
Yang
,
R.
,
2018
, “
Colloquium: Phononic Thermal Properties of two-Dimensional Materials
,”
Rev. Mod. Phys.
,
90
(
4
), p.
041002
.
11.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.
12.
Nika
,
D. L.
,
Pokatilov
,
E. P.
,
Askerov
,
A. S.
, and
Balandin
,
A. A.
,
2009
, “
Phonon Thermal Conduction in Graphene: Role of Umklapp and Edge Roughness Scattering
,”
Phys. Rev. B
,
79
(
15
), p.
155413
.
13.
Wang
,
Q. H.
,
Kalantar-Zadeh
,
K.
,
Kis
,
A.
,
Coleman
,
J. N.
, and
Strano
,
M. S.
,
2012
, “
Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides
,”
Nat. Nanotechnol.
,
7
(
11
), pp.
699
712
.
14.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.
15.
Li
,
G.
,
Li
,
Y.
,
Liu
,
H.
,
Guo
,
Y.
,
Li
,
Y.
, and
Zhu
,
D.
,
2010
, “
Architecture of Graphdiyne Nanoscale Films
,”
Chem. Commun.
,
46
(
19
), pp.
3256
3258
.
16.
Li
,
G.
,
Li
,
Y.
,
Qian
,
X.
,
Liu
,
H.
,
Lin
,
H.
,
Chen
,
N.
, and
Li
,
Y.
,
2011
, “
Construction of Tubular Molecule Aggregations of Graphdiyne for Highly Efficient Field Emission
,”
J. Phys. Chem. C
,
115
(
6
), pp.
2611
2615
.
17.
Enyashin
,
A. N.
, and
Ivanovskii
,
A. L.
,
2011
, “
Graphene Allotropes
,”
Phys. Status Solidi B
,
248
(
8
), pp.
1879
1883
.
18.
Sevinçli
,
H.
, and
Sevik
,
C.
,
2014
, “
Electronic, Phononic, and Thermoelectric Properties of Graphyne Sheets
,”
Appl. Phys. Lett.
,
105
(
22
), p.
223108
.
19.
Kang
,
J.
,
Li
,
J.
,
Wu
,
F.
,
Li
,
S.-S.
, and
Xia
,
J.-B.
,
2011
, “
Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet
,”
J. Phys. Chem. C
,
115
(
42
), pp.
20466
20470
.
20.
Yue
,
Q.
,
Chang
,
S.
,
Kang
,
J.
,
Qin
,
S.
, and
Li
,
J.
,
2013
, “
Mechanical and Electronic Properties of Graphyne and Its Family Under Elastic Strain: Theoretical Predictions
,”
J. Phys. Chem. C
,
117
(
28
), pp.
14804
14811
.
21.
Puigdollers
,
A. R.
,
Alonso
,
G.
, and
Gamallo
,
P.
,
2016
, “
First-Principles Study of Structural, Elastic and Electronic Properties of α-, β-and γ-Graphyne
,”
Carbon
,
96
, pp.
879
887
.
22.
Pan
,
L. D.
,
Zhang
,
L. Z.
,
Song
,
B. Q.
,
Du
,
S. X.
, and
Gao
,
H. J.
,
2011
, “
Graphyne- and Graphdiyne-Based Nanoribbons: Density Functional Theory Calculations of Electronic Structures
,”
Appl. Phys. Lett.
,
98
(
17
), p.
173102
.
23.
Ouyang
,
T.
,
Chen
,
Y.
,
Liu
,
L.-M.
,
Xie
,
Y.
,
Wei
,
X.
, and
Zhong
,
J.
,
2012
, “
Thermal Transport in Graphyne Nanoribbons
,”
Phys. Rev. B
,
85
(
23
), p.
235436
.
24.
Zhang
,
Y. Y.
,
Pei
,
Q. X.
, and
Wang
,
C. M.
,
2012
, “
Mechanical Properties of Graphynes Under Tension: A Molecular Dynamics Study
,”
Appl. Phys. Lett.
,
101
(
8
), p.
081909
.
25.
Xue
,
M.
,
Qiu
,
H.
, and
Guo
,
W.
,
2013
, “
Exceptionally Fast Water Desalination at Complete Salt Rejection by Pristine Graphyne Monolayers
,”
Nanotechnology
,
24
(
50
), p.
505720
.
26.
Cranford
,
S. W.
, and
Buehler
,
M. J.
,
2012
, “
Selective Hydrogen Purification Through Graphdiyne Under Ambient Temperature and Pressure
,”
Nanoscale
,
4
(
15
), pp.
4587
4593
.
27.
Zhao
,
J.
,
Wei
,
N.
,
Fan
,
Z.
,
Jiang
,
J.-W.
, and
Rabczuk
,
T.
,
2013
, “
The Mechanical Properties of Three Types of Carbon Allotropes
,”
Nanotechnology
,
24
(
9
), p.
095702
.
28.
Song
,
L.
,
Ci
,
L.
,
Lu
,
H.
,
Sorokin
,
P. B.
,
Jin
,
C.
,
Ni
,
J.
,
Kvashnin
,
A. G.
,
Kvashnin
,
D. G.
,
Lou
,
J.
,
Yakobson
,
B. I.
, and
Ajayan
,
P. M.
,
2010
, “
Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers
,”
Nano Lett.
,
10
(
8
), pp.
3209
3215
.
29.
Chen
,
Y.
,
Zou
,
J.
,
Campbell
,
S. J.
, and
Caer
,
G. L.
,
2004
, “
Boron Nitride Nanotubes: Pronounced Resistance to Oxidation
,”
Appl. Phys. Lett.
,
84
(
13
), pp.
2430
2432
.
30.
Kubota
,
Y.
,
Watanabe
,
K.
,
Tsuda
,
O.
, and
Taniguchi
,
T.
,
2007
, “
Deep Ultraviolet Light–Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure
,”
Science
,
317
(
5840
), pp.
932
934
.
31.
Watanabe
,
K.
,
Taniguchi
,
T.
, and
Kanda
,
H.
,
2004
, “
Direct-Bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal
,”
Nat. Mater.
,
3
(
6
), pp.
404
409
.
32.
Liu
,
F.
,
Ming
,
P.
, and
Li
,
J.
,
2007
, “
Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene Under Tension
,”
Phys. Rev. B
,
76
(
6
), p.
064120
.
33.
Zhang
,
T.
,
Li
,
X.
,
Kadkhodaei
,
S.
, and
Gao
,
H.
,
2012
, “
Flaw Insensitive Fracture in Nanocrystalline Graphene
,”
Nano Lett.
,
12
(
9
), pp.
4605
4610
.
34.
Zhang
,
T.
,
Li
,
X.
, and
Gao
,
H.
,
2014
, “
Defects Controlled Wrinkling and Topological Design in Graphene
,”
J. Mech. Phys. Solids
,
67
, pp.
2
13
.
35.
Zhang
,
T.
,
Li
,
X.
, and
Gao
,
H.
,
2014
, “
Designing Graphene Structures With Controlled Distributions of Topological Defects: A Case Study of Toughness Enhancement in Graphene Ruga
,”
Extreme Mech. Lett.
,
1
, pp.
3
8
.
36.
Marianetti
,
C. A.
, and
Yevick
,
H. G.
,
2010
, “
Failure Mechanisms of Graphene Under Tension
,”
Phys. Rev. Lett.
,
105
(
24
), p.
245502
.
37.
Peng
,
Q.
,
Ji
,
W.
, and
De
,
S.
,
2012
, “
Mechanical Properties of Graphyne Monolayers: A First-Principles Study
,”
Phys. Chem. Chem. Phys
,
14
(
38
), pp.
13385
13391
.
38.
Peng
,
Q.
,
Ji
,
W.
, and
De
,
S.
,
2012
, “
Mechanical Properties of the Hexagonal Boron Nitride Monolayer: Ab Initio Study
,”
Comput. Mater. Sci.
,
56
, pp.
11
17
.
39.
Wu
,
J.
,
Wang
,
B.
,
Wei
,
Y.
,
Yang
,
R.
, and
Dresselhaus
,
M.
,
2013
, “
Mechanics and Mechanically Tunable Band Gap in Single-Layer Hexagonal Boron-Nitride
,”
Mater. Res. Lett.
,
1
(
4
), pp.
200
206
.
40.
Pereira
,
V. M.
,
Neto
,
A. H. C.
, and
Peres
,
N. M. R.
,
2009
, “
Tight-Binding Approach to Uniaxial Strain in Graphene
,”
Phys. Rev. B
,
80
(
4
), p.
045401
.
41.
Zhao
,
H.
,
Min
,
K.
, and
Aluru
,
N. R.
,
2009
, “
Size and Chirality Dependent Elastic Properties of Graphene Nanoribbons Under Uniaxial Tension
,”
Nano Lett.
,
9
(
8
), pp.
3012
3015
.
42.
Cranford
,
S. W.
,
Brommer
,
D. B.
, and
Buehler
,
M. J.
,
2012
, “
Extended Graphynes: Simple Scaling Laws for Stiffness, Strength and Fracture
,”
Nanoscale
,
4
(
24
), pp.
7797
7809
.
43.
Yang
,
Y.
, and
Xu
,
X.
,
2012
, “
Mechanical Properties of Graphyne and its Family—A Molecular Dynamics Investigation
,”
Comput. Mater. Sci.
,
61
, pp.
83
88
.
44.
Odegarda
,
G. M.
,
Gatesb
,
T. S.
,
Nicholsonc
,
L. M.
, and
Wised
,
K. E.
,
2002
, “
Equivalent-Continuum Modeling of Nano-Structured Materials
,”
Compos. Sci. Technol.
,
62
(
14
), pp.
1869
1880
.
45.
Chang
,
T.
, and
Gao
,
H.
,
2003
, “
Size-Dependent Elastic Properties of a Single-Walled Carbon Nanotube via a Molecular Mechanics Model
,”
J. Mech. Phys. Solids
,
51
(
6
), pp.
1059
1074
.
46.
Chang
,
T.
,
Geng
,
J.
, and
Guo
,
X.
,
2005
, “
Chirality- and Size-Dependent Elastic Properties of Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
,
87
(
25
), p.
251929
.
47.
Chang
,
T.
,
Guo
,
W.
, and
Guo
,
X.
,
2005
, “
Buckling of Multiwalled Carbon Nanotubes Under Axial Compression and Bending via a Molecular Mechanics Mode
,”
Phys. Rev. B
,
72
(
6
), p.
064101
.
48.
Chang
,
T.
,
Li
,
G.
, and
Guo
,
X.
,
2005
, “
Elastic Axial Buckling of Carbon Nanotubes via a Molecular Mechanics Model
,”
Carbon
,
43
(
2
), pp.
287
294
.
49.
Ma
,
T.
,
Li
,
B.
, and
Chang
,
T.
,
2011
, “
Chirality- and Curvature-Dependent Bending Stiffness of Single Layer Graphene
,”
Appl. Phys. Lett.
,
99
(
20
), p.
201901
.
50.
Shen
,
L.
, and
Li
,
J.
,
2005
, “
Equilibrium Structure and Strain Energy of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
71
(
16
), p.
165427
.
51.
Hou
,
J.
,
Yin
,
Z.
,
Zhang
,
Y.
, and
Chang
,
T.
,
2015
, “
An Analytical Molecular Mechanics Model for Elastic Properties of Graphyne-n
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
094501
.
52.
Hou
,
J.
,
Yin
,
Z.
,
Zhang
,
Y.
, and
Chang
,
T.-C.
,
2016
, “
Structure Dependent Elastic Properties of Supergraphene
,”
Acta Mech. Sin.
,
32
(
4
), pp.
684
689
.
53.
Qu
,
J.
,
Zhang
,
H.
,
Li
,
J.
,
Zhao
,
S.
, and
Chang
,
T.
,
2017
, “
Structure-Dependent Mechanical Properties of Extended Beta-Graphyne
,”
Carbon
,
120
, pp.
350
357
.
54.
Jiang
,
L.
, and
Guo
,
W.
,
2011
, “
A Molecular Mechanics Study on Size-Dependent Elastic Properties of Single-Walled Boron Nitride Nanotubes
,”
J. Mech. Phys. Solids
,
59
(
6
), pp.
1204
1213
.
55.
Geng
,
J.
, and
Chang
,
T.
,
2006
, “
Nonlinear Stick-Spiral Model for Predicting Mechanical Behavior of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
74
(
24
), p.
245428
.
56.
Xiao
,
J. R.
,
Gama
,
B. A.
, and
Gillespie
,
J. W.
, Jr.
,
2005
, “
An Analytical Molecular Structural Mechanics Model for the Mechanical Properties of Carbon Nanotubes
,”
Int. J. Solids Struct.
,
42
(
11–12
), pp.
3075
3092
.
57.
Wei
,
X.
,
Fragneaud
,
B.
,
Marianetti
,
C. A.
, and
Kysar
,
J. W.
,
2009
, “
Nonlinear Elastic Behavior of Graphene: Ab Initio Calculations to Continuum Description
,”
Phys. Rev. B
,
80
(
20
), p.
205407
.
58.
Xu
,
M.
,
Paci
,
J. T.
,
Oswald
,
J.
, and
Belytschko
,
T.
,
2012
, “
A Constitutive Equation for Graphene Based on Density Functional Theory
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2582
2589
.
59.
Kumar
,
S.
, and
Parks
,
D. M.
,
2015
, “
On the Hyperelastic Softening and Elastic Instabilities in Graphene
,”
Proc. R. Soc. A
,
471
(
2173
), p.
20140567
.
60.
Berinskii
,
I. E.
, and
Borodich
,
F. M.
,
2013
, “
Elastic In-Plane Properties of 2D Linearized Models of Graphene
,”
Mech. Mater.
,
62
, pp.
60
68
.
61.
Chang
,
T.
,
2010
, “
A Molecular Based Anisotropic Shell Model for Single-Walled Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
58
(
9
), pp.
1422
1433
.
62.
Davini
,
C.
,
2014
, “
Homogenization of a Graphene Sheet
,”
Continuum Mech. Thermodyn.
,
26
(
1
), pp.
95
113
.
63.
Caillerie
,
D.
,
Mourad
,
A.
, and
Raoult
,
A.
,
2006
, “
Discrete Homogenization in Graphene Sheet Modeling
,”
J. Elasticity
,
84
(
1
), pp.
33
68
.
64.
Chang
,
C.-A.
,
1983
, “
Correlations of Bending Mode Force Constants among Polyatomic Molecules
,”
J. Phys. Chem.
,
87
(
10
), pp.
1694
1696
.
65.
Halgren
,
T. A.
,
1990
, “
Maximally Diagonal Force Constants in Dependent Angle-Bending Coordinates. 2. Implications for the Design of Empirical Force Fields
,”
J. Am. Chem. Soc.
,
112
(
12
), pp.
4710
4723
.
66.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comp. Phys.
,
117
(
1
), pp.
1
19
.
67.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.
68.
Kınacı
,
A.
,
Haskins
,
J. B.
,
Sevik
,
C.
, and
Çağın
,
T.
,
2012
, “
Thermal Conductivity of BN-C Nanostructures
,”
Phys. Rev. B
,
86
(
11
), p.
115410
.
69.
Al-Jishi
,
R.
, and
Dresselhaus
,
G.
,
1982
, “
Lattice-Dynamical Model for Graphite
,”
Phys. Rev. B
,
26
(
8
), pp.
4514
4522
.
70.
Cranford
,
S. W.
, and
Buehler
,
M. J.
,
2011
, “
Mechanical Properties of Graphyne
,”
Carbon
,
49
(
13
), pp.
4111
4121
.
71.
Tsai
,
J. L.
, and
Tu
,
J. F.
,
2010
, “
Characterizing Mechanical Properties of Graphite Using Molecular Dynamics Simulation
,”
Mater. Des.
,
31
(
1
), pp.
194
199
.
72.
Hou
,
X.
,
Xie
,
Z.
,
Li
,
C.
,
Li
,
G.
, and
Chen
,
Z.
,
2018
, “
Study of Electronic Structure, Thermal Conductivity, Elastic and Optical Properties of α, β, γ-Graphyne
,”
Materials
,
11
(
2
), p.
188
.
73.
Hernandez
,
S. A.
, and
Fonseca
,
A. F.
,
2017
, “
Anisotropic Elastic Modulus, High Poisson's Ratio and Negative Thermal Expansion of Graphynes and Graphdiynes
,”
Diam. Relat. Mater.
,
77
, pp.
57
64
.
74.
Thomas
,
S.
,
Ajith
,
K. M.
, and
Valsakumar
,
M. C.
,
2016
, “
Directional Anisotropy, Finite Size Effect and Elastic Properties of Hexagonal Boron Nitride
,”
J. Phys. Condens. Matter
,
28
(
29
), p.
295302
.
You do not currently have access to this content.