Abstract
Deformation of solid or hollow cylinders with transverse isotropic material under axisymmetric loading is one of the oldest problems. A general field solution is highly sought after, as this problem finds application in various fields. In the present work, this problem has been formulated starting with basic curvilinear kinematics and governing equations are derived using Reissner’s variational principle. Non-singular solutions have been derived and have been validated with literature for specific cases.
Issue Section:
Technical Brief
References
1.
Clapeyron
, B.
, and Lamé
, G.
, 1831
, “Mémoire sur l’équilibre intérieur des corps solides homogènes. (Suite du mémoire)
,” J. Reine Angew. Math.
, 1831
(7
), pp. 381
–413
.2.
Pochhammer
, L.
, 1876
, “Beitrag zur theorie der biegung des kreiscylinders
,” J. Reine Angew. Math.
, 1876
(81
), pp. 33
–61
.3.
Chree
, C.
, 1889
, “The Equations of An Isotropic Solid in Polar and Cylindrical Co-Ordinates, Their Solution and Application
,” Trans. Cambridge Phil. Soc.
, 14
, pp. 250
–369
.4.
Schiff
, P. A.
, 1883
, “Sur l’équilibre d’un cylindre élastique
,” J. Math. Pures Appl.
, 9
, pp. 407
–421
.5.
Filon
, L. N. G.
, 1902
, “On the Elastic Equilibrium of Circular Cylinders Under Certain Practical Systems of Load
,” Philos. Trans. R. Soc. London
, A198
, pp. 147
–233
.6.
Eubanks
, R. A.
, and Sternberg
, E.
, 1954
, “On the Axisymmetric Problem of Elasticity Theory for a Medium With Transverse Isotropy
,” J. Ration. Mech. Anal.
, 3
, pp. 89
–101
.7.
Warren
, W. E.
, Roark
, A. L.
, and BLckford
, W. B.
, 1967
, “End Effect in Semi-Infinite Transversely Isotropic Cylinders
,” AIAA J.
, 5
(8
), pp. 1448
–1455
. 8.
Horgan
, C. O.
, 1974
, “The Axisymmetric End Problem for Transversely Isotropic Circular Cylinders
,” Int. J. Solids Struct
, 10
(8
), pp. 837
–852
. 9.
Vendhan
, C.
, and Archer
, R.
, 1978
, “Axisymmetric Stresses in Transversely Isotropic Finite Cylinders
,” Int. J. Solids Struct
, 14
(4
), pp. 305
–318
. 10.
Tarn
, J.-Q.
, Chang
, H.-H.
, and Tseng
, W.-D.
, 2009
, “Axisymmetric Deformation of a Transversely Isotropic Cylindrical Body: A Hamiltonian State-Space Approach
,” J. Elast.
, 97
(2
), pp. 131
–154
. 11.
Pourseifi
, M.
, and Faal
, R. T.
, 2017
, “Mixed Mode Axisymmetric Cracks in Transversely Isotropic Infinite Solid Cylinders
,” Appl. Math. Model.
, 49
, pp. 279
–301
. 12.
Lekhnitskii
, S.
, 1940
, “Symmetrical Deformation and Torsion of a Body of Revolution With a Special Kind of Anisotropy
,” Prikladnaya Matematika i Mekhanika
, 4
(3
), pp. 43
–60
.13.
Inc., W. R.
, 2019
, Mathematica, Version 12.0. Champaign, IL, 2019.14.
Irgens
, F.
, 2008
, Continuum Mechanics
, Springer
, Berlin/Heidelberg
, p. 533
.15.
Hodges
, D.
, 2006
, Nonlinear Composite Beam Theory
, AIAA
, Virginia
, p. 215
.16.
Reissner
, E.
, 1950
, “On a Variational Theorem in Elasticity
,” J. Math. Phys.
, 29
(1–4
), pp. 90
–95
. 17.
Dym
, C. L.
, and Shames
, I. H.
, 2013
, Solid Mechanics
, Springer
, New York
, pp. 140
–142
.18.
Berdichevsky
, V.
, 2009
, Variational Principles of Continuum Mechanics-I Fundamentals
, Springer
, Berlin/Heidelberg
, p. 294
.19.
Wu
, C.-P.
, Chiu
, K.-H.
, and Wang
, Y.-M.
, 2011
, “RMVT-Based Meshless Collocation and Element-Free Galerkin Methods for the Quasi-3D Analysis of Multilayered Composite and FGM Plates
,” Compos. Struct.
, 93
(2
), pp. 923
–943
. 20.
Littlefield
, D. L.
, and Desai
, P. V.
, 1990
, “Frobenius Analysis of Higher Order Equations: Incipient Buoyant Thermal Convection
,” SIAM J. Appl. Math.
, 50
(6
), pp. 1752
–1763
. 21.
Ince
, E.
, 1956
, Ordinary Differential Equations
, Dover Publications
, New York
, pp. 396
–415
.22.
Steven
, G.
, 1973
, “The Eigenvalue Problem for Hollow Circular Cylinders
,” Int. J. Eng. Sci.
, 11
(7
), pp. 795
–810
. 23.
Wei
, X. X.
, Chau
, K. T.
, Wong
, R. H. C.
, 1999
, “Analytic Solution for Axial Point Load Strength Test on Solid Circular Cylinders
,” J. Eng. Mech.
, 125
(12
), pp. 1349
–1357
. 24.
Meleshko
, V. V.
, 2003
, “Equilibrium of An Elastic Finite Cylinder: Filon’s Problem Revisited
,” J. Eng. Math.
, 46
(3
), pp. 355
–376
. 25.
Wu
, Z. J.
, Ye
, J. Q.
, and Cabrera
, J. G.
, 2000
, “3D Analysis of Stress Transfer in the Micromechanics of Fiber Reinforced Composites by Using An Eigen-Function Expansion Method
,” J. Mech. Phys. Solids
, 48
(5
), pp. 1037
–1063
. Copyright © 2022 by ASME
You do not currently have access to this content.