Abstract

Deformation of solid or hollow cylinders with transverse isotropic material under axisymmetric loading is one of the oldest problems. A general field solution is highly sought after, as this problem finds application in various fields. In the present work, this problem has been formulated starting with basic curvilinear kinematics and governing equations are derived using Reissner’s variational principle. Non-singular solutions have been derived and have been validated with literature for specific cases.

References

1.
Clapeyron
,
B.
, and
Lamé
,
G.
,
1831
, “
Mémoire sur l’équilibre intérieur des corps solides homogènes. (Suite du mémoire)
,”
J. Reine Angew. Math.
,
1831
(
7
), pp.
381
413
.
2.
Pochhammer
,
L.
,
1876
, “
Beitrag zur theorie der biegung des kreiscylinders
,”
J. Reine Angew. Math.
,
1876
(
81
), pp.
33
61
.
3.
Chree
,
C.
,
1889
, “
The Equations of An Isotropic Solid in Polar and Cylindrical Co-Ordinates, Their Solution and Application
,”
Trans. Cambridge Phil. Soc.
,
14
, pp.
250
369
.
4.
Schiff
,
P. A.
,
1883
, “
Sur l’équilibre d’un cylindre élastique
,”
J. Math. Pures Appl.
,
9
, pp.
407
421
.
5.
Filon
,
L. N. G.
,
1902
, “
On the Elastic Equilibrium of Circular Cylinders Under Certain Practical Systems of Load
,”
Philos. Trans. R. Soc. London
,
A198
, pp.
147
233
.
6.
Eubanks
,
R. A.
, and
Sternberg
,
E.
,
1954
, “
On the Axisymmetric Problem of Elasticity Theory for a Medium With Transverse Isotropy
,”
J. Ration. Mech. Anal.
,
3
, pp.
89
101
.
7.
Warren
,
W. E.
,
Roark
,
A. L.
, and
BLckford
,
W. B.
,
1967
, “
End Effect in Semi-Infinite Transversely Isotropic Cylinders
,”
AIAA J.
,
5
(
8
), pp.
1448
1455
.
8.
Horgan
,
C. O.
,
1974
, “
The Axisymmetric End Problem for Transversely Isotropic Circular Cylinders
,”
Int. J. Solids Struct
,
10
(
8
), pp.
837
852
.
9.
Vendhan
,
C.
, and
Archer
,
R.
,
1978
, “
Axisymmetric Stresses in Transversely Isotropic Finite Cylinders
,”
Int. J. Solids Struct
,
14
(
4
), pp.
305
318
.
10.
Tarn
,
J.-Q.
,
Chang
,
H.-H.
, and
Tseng
,
W.-D.
,
2009
, “
Axisymmetric Deformation of a Transversely Isotropic Cylindrical Body: A Hamiltonian State-Space Approach
,”
J. Elast.
,
97
(
2
), pp.
131
154
.
11.
Pourseifi
,
M.
, and
Faal
,
R. T.
,
2017
, “
Mixed Mode Axisymmetric Cracks in Transversely Isotropic Infinite Solid Cylinders
,”
Appl. Math. Model.
,
49
, pp.
279
301
.
12.
Lekhnitskii
,
S.
,
1940
, “
Symmetrical Deformation and Torsion of a Body of Revolution With a Special Kind of Anisotropy
,”
Prikladnaya Matematika i Mekhanika
,
4
(
3
), pp.
43
60
.
13.
Inc., W. R.
,
2019
, Mathematica, Version 12.0. Champaign, IL, 2019.
14.
Irgens
,
F.
,
2008
,
Continuum Mechanics
,
Springer
,
Berlin/Heidelberg
, p.
533
.
15.
Hodges
,
D.
,
2006
,
Nonlinear Composite Beam Theory
,
AIAA
,
Virginia
, p.
215
.
16.
Reissner
,
E.
,
1950
, “
On a Variational Theorem in Elasticity
,”
J. Math. Phys.
,
29
(
1–4
), pp.
90
95
.
17.
Dym
,
C. L.
, and
Shames
,
I. H.
,
2013
,
Solid Mechanics
,
Springer
,
New York
, pp.
140
142
.
18.
Berdichevsky
,
V.
,
2009
,
Variational Principles of Continuum Mechanics-I Fundamentals
,
Springer
,
Berlin/Heidelberg
, p.
294
.
19.
Wu
,
C.-P.
,
Chiu
,
K.-H.
, and
Wang
,
Y.-M.
,
2011
, “
RMVT-Based Meshless Collocation and Element-Free Galerkin Methods for the Quasi-3D Analysis of Multilayered Composite and FGM Plates
,”
Compos. Struct.
,
93
(
2
), pp.
923
943
.
20.
Littlefield
,
D. L.
, and
Desai
,
P. V.
,
1990
, “
Frobenius Analysis of Higher Order Equations: Incipient Buoyant Thermal Convection
,”
SIAM J. Appl. Math.
,
50
(
6
), pp.
1752
1763
.
21.
Ince
,
E.
,
1956
,
Ordinary Differential Equations
,
Dover Publications
,
New York
, pp.
396
415
.
22.
Steven
,
G.
,
1973
, “
The Eigenvalue Problem for Hollow Circular Cylinders
,”
Int. J. Eng. Sci.
,
11
(
7
), pp.
795
810
.
23.
Wei
,
X. X.
,
Chau
,
K. T.
,
Wong
,
R. H. C.
,
1999
, “
Analytic Solution for Axial Point Load Strength Test on Solid Circular Cylinders
,”
J. Eng. Mech.
,
125
(
12
), pp.
1349
1357
.
24.
Meleshko
,
V. V.
,
2003
, “
Equilibrium of An Elastic Finite Cylinder: Filon’s Problem Revisited
,”
J. Eng. Math.
,
46
(
3
), pp.
355
376
.
25.
Wu
,
Z. J.
,
Ye
,
J. Q.
, and
Cabrera
,
J. G.
,
2000
, “
3D Analysis of Stress Transfer in the Micromechanics of Fiber Reinforced Composites by Using An Eigen-Function Expansion Method
,”
J. Mech. Phys. Solids
,
48
(
5
), pp.
1037
1063
.
You do not currently have access to this content.