Abstract

Highly compliant structures such as microbeams can deform substantially in response to interactions between molecules adsorbed on their surface. To understand such systems and improve their detection signals, a mechano-electro-chemical coupling model for mechanical deformations of the microbeams immobilized single-stranded DNA (ssDNA) is established due to flexoelectricity. The governing equations and corresponding boundary conditions of ssDNA microbeams are derived by using the variational principle. The bending deformations of ssDNA microbeams (one for cantilever beam and another for simply supported beam) are derived. The electric potential in the regions inside and outside the ssDNA layer is obtained by linear Poisson–Boltzmann equation for different electrolyte solutions. The analytical expressions to quantify the beam deflection and the potential difference of ssDNA layer are presented. The theoretical predictions are compared with the experimental data to validate the applicability of the present model. Numerical results reveal that the solution types, thickness, and elastic modulus of substrate materials have an obvious influence on the deflections of ssDNA microbeams. Therefore, the present model can help to improve the reading of the bending deformation signal of the microbeam biosensors.

References

1.
Sophia
,
N.
, and
Oh Seok
,
K.
,
2022
, “
Micro-Electromechanical Systems-Based Sensors and Their Applications
,”
Appl. Sci. Converg. Technol.
,
31
(
2
), pp.
40
45
.
2.
Algamili
,
A. S.
,
Khir
,
M. H. M.
,
Dennis
,
J. O.
,
Ahmed
,
A. Y.
,
Alabsi
,
S. S.
,
Ba Hashwan
,
S. S.
, and
Junaid
,
M. M.
,
2021
, “
A Review of Actuation and Sensing Mechanisms in Mems-Based Sensor Devices
,”
Nanoscale Res. Lett.
,
16
(
1
), p.
16
.
3.
Muñoz-Galán
,
H.
,
Alemán
,
C.
, and
Pérez-Madrigal
,
M. M.
,
2023
, “
Beyond Biology: Alternative Uses of Cantilever-Based Technologies
,”
Lab Chip
,
23
(
5
), pp.
1128
1150
.
4.
Fritz
,
J.
,
Baller
,
M. K.
,
Lang
,
H. P.
,
Rothuizen
,
H.
,
Vettiger
,
P.
,
Meyer
,
E.
,
Güntherodt
,
H.-J.
,
Gerber
,
C.
, and
Gimzewski
,
J. K.
,
2000
, “
Translating Biomolecular Recognition Into Nanomechanics
,”
Science
,
288
(
5464
), pp.
316
318
.
5.
Zhang
,
J.
,
Lang
,
H. P.
,
Huber
,
F.
,
Bietsch
,
A.
,
Grange
,
W.
,
Certa
,
U.
,
McKendry
,
R.
,
Güntherodt
,
H.-J.
,
Hegner
,
M.
, and
Gerber
,
C.
,
2006
, “
Rapid and Label-Free Nanomechanical Detection of Biomarker Transcripts in Human RNA
,”
Nat. Nanotechnol.
,
1
(
3
), pp.
214
220
.
6.
Wu
,
G. H.
,
Datar
,
R. H.
,
Hansen
,
K. M.
,
Thundat
,
T.
,
Cote
,
R. J.
, and
Majumdar
,
A.
,
2001
, “
Bioassay of Prostate-Specific Antigen (PSA) Using Microcantilevers
,”
Nat. Biotechnol.
,
19
(
9
), pp.
856
860
.
7.
Shekhawat
,
G.
,
Tark
,
S. H.
, and
Dravid
,
V. P.
,
2006
, “
Mosfet-Embedded Microcantilevers for Measuring Deflection in Biomolecular Sensors
,”
Science
,
311
(
5767
), pp.
1592
1595
.
8.
Zandi
,
R.
,
Dragnea
,
B.
,
Travesset
,
A.
, and
Podgornik
,
R.
,
2020
, “
On Virus Growth and Form
,”
Phys. Rep.
,
847
, pp.
1
102
.
9.
Li
,
C.
,
Zhang
,
G.
,
Wu
,
S.
, and
Zhang
,
Q.
,
2018
, “
Aptamer-Based Microcantilever-Array Biosensor for Profenofos Detection
,”
Anal. Chim. Acta
,
1020
, pp.
116
122
.
10.
Li
,
D.
,
Zhu
,
B.
,
Pang
,
K.
,
Zhang
,
Q.
,
Qu
,
M.
,
Liu
,
W.
,
Fu
,
Y.
, and
Xie
,
J.
,
2022
, “
Virtual Sensor Array Based on Piezoelectric Cantilever Resonator for Identification of Volatile Organic Compounds
,”
ACS Sens.
,
7
(
5
), pp.
1555
1563
.
11.
Raiteri
,
R.
,
Grattarola
,
M.
,
Butt
,
H.-J.
, and
Skládal
,
P.
,
2001
, “
Micromechanical Cantilever-Based Biosensors
,”
Sens. Actuators, B Chem.
,
79
(
2–3
), pp.
115
126
.
12.
Wu
,
G. H.
,
Ji
,
H. F.
,
Hansen
,
K.
,
Thundat
,
T.
,
Datar
,
R.
,
Cote
,
R.
,
Hagan
,
M. F.
,
Chakraborty
,
A. K.
, and
Majumdar
,
A.
,
2001
, “
Origin of Nanomechanical Cantilever Motion Generated From Biomolecular Interactions
,”
Proc. Natl. Acad. Sci. USA
,
98
(
4
), pp.
1560
1564
.
13.
McKendry
,
R.
,
Zhang
,
J. Y.
,
Arntz
,
Y.
,
Strunz
,
T.
,
Hegner
,
M.
,
Lang
,
H. P.
,
Baller
,
M. K.
, et al
,
2002
, “
Multiple Label-Free Biodetection and Quantitative DNA-Binding Assays on a Nanomechanical Cantilever Array
,”
Proc. Natl. Acad. Sci. USA
,
99
(
15
), pp.
9783
9788
.
14.
Stachowiak
,
J. C.
,
Yue
,
M.
,
Castelino
,
K.
,
Chakraborty
,
A.
, and
Majumdar
,
A.
,
2006
, “
Chemomechanics of Surface Stresses Induced by DNA Hybridization
,”
Langmuir
,
22
(
1
), pp.
263
268
.
15.
Mertens
,
J.
,
Rogero
,
C.
,
Calleja
,
M.
,
Ramos
,
D.
,
Martin-Gago
,
J. A.
,
Briones
,
C.
, and
Tamayo
,
J.
,
2008
, “
Label-Free Detection of DNA Hybridization Based on Hydration-Induced Tension in Nucleic Acid Films
,”
Nat. Nanotechnol.
,
3
(
5
), pp.
301
307
.
16.
Jeon
,
S.
,
Jung
,
N.
, and
Thundat
,
T.
,
2007
, “
Nanomechanics of a Self-Assembled Monolayer on Microcantilever Sensors Measured by a Multiple-Point Deflection Technique
,”
Sens. Actuators, B Chem.
,
122
(
2
), pp.
365
368
.
17.
Zhang
,
J.
,
Lang
,
H. P.
,
Yoshikawa
,
G.
, and
Gerber
,
C.
,
2012
, “
Optimization of DNA Hybridization Efficiency by pH-Driven Nanomechanical Bending
,”
Langmuir
,
28
(
15
), pp.
6494
6501
.
18.
Tan
,
Z. Q.
,
Zhang
,
N. H.
,
Meng
,
W. L.
, and
Tang
,
H. S.
,
2016
, “
Mechanism for Invalid Detection of Microcantilever-DNA Biosensors Due to Environmental Changes
,”
J. Phys. D: Appl. Phys.
,
49
(
22
), p.
225402
.
19.
Sushko
,
M. L.
,
Harding
,
J. H.
,
Shluger
,
A. L.
,
McKendry
,
R. A.
, and
Watari
,
M.
,
2008
, “
Physics of Nanomechanical Biosensing on Cantilever Arrays
,”
Adv. Mater.
,
20
(
20
), pp.
3848
3853
.
20.
Sushko
,
M. L.
,
2009
, “
Nanomechanics of Organic/Inorganic Interfaces: A Theoretical Insight
,”
Faraday Discuss.
,
143
(
81–93
), pp.
63
80
.
21.
Hagan
,
M. F.
,
Majumdar
,
A.
, and
Chakraborty
,
A. K.
,
2002
, “
Nanomechanical Forces Generated by Surface Grafted DNA
,”
J. Phys. Chem. B
,
106
(
39
), pp.
10163
10173
.
22.
Zhang
,
N. H.
, and
Shan
,
J. Y.
,
2008
, “
An Energy Model for Nanomechanical Deflection of Cantilever-DNA Chip
,”
J. Mech. Phys. Solids
,
56
(
6
), pp.
2328
2337
.
23.
Zhang
,
N. H.
,
Wu
,
C. X.
,
Yang
,
Y.
, and
Wu
,
J. Z.
,
2022
, “
Adjustable Frequency Shift of Laminated DNA Microbeam Under Complex Detection Conditions by Different Packaging Patterns
,”
Compos. Struct.
,
292
, p.
115652
.
24.
Chen
,
Q.
,
Zheng
,
S.
,
Li
,
Z.
, and
Zeng
,
C.
,
2021
, “
Size-Dependent Free Vibration Analysis of Functionally Graded Porous Piezoelectric Sandwich Nanobeam Reinforced With Graphene Platelets With Consideration of Flexoelectric Effect
,”
Smart Mater. Struct.
,
30
(
3
), p.
035008
.
25.
Ray
,
M.
,
2014
, “
Exact Solutions for Flexoelectric Response in Nanostructures
,”
ASME J. Appl. Mech.
,
81
(
9
), p.
091002
.
26.
Yang
,
S.
,
Zhao
,
X.
, and
Sharma
,
P.
,
2017
, “
Revisiting the Instability and Bifurcation Behavior of Soft Dielectrics
,”
ASME J. Appl. Mech.
,
84
(
3
), p.
031008
.
27.
Liu
,
L. P.
, and
Sharma
,
P.
,
2013
, “
Flexoelectricity and Thermal Fluctuations of Lipid Bilayer Membranes: Renormalization of Flexoelectric, Dielectric, and Elastic Properties
,”
Phys. Rev. E
,
87
(
3
), p.
032715
.
28.
Ahmadpoor
,
F.
,
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2013
, “
Apparent Flexoelectricity in Lipid Bilayer Membranes Due to External Charge and Dipolar Distributions
,”
Phys. Rev. E
,
88
(
5
), p.
050701
.
29.
Petrov
,
A. G.
,
2006
, “
Electricity and Mechanics of Biomembrane Systems: Flexoelectricity in Living Membranes
,”
Anal. Chim. Acta
,
568
(
1–2
), pp.
70
83
.
30.
Herrera-Valencia
,
E.
, and
Rey
,
A. D.
,
2014
, “
Actuation of Flexoelectric Membranes in Viscoelastic Fluids With Applications to Outer Hair Cells
,”
Philos. Trans. R. Soc., A
,
372
(
2029
), p.
20130369
.
31.
Breneman
,
K. D.
,
Brownell
,
W. E.
, and
Rabbitt
,
R. D.
,
2009
, “
Hair Cell Bundles: Flexoelectric Motors of the Inner Ear
,”
PLoS One
,
4
(
4
), p.
e5201
.
32.
Torbati
,
M.
,
Mozaffari
,
K.
,
Liu
,
L.
, and
Sharma
,
P.
,
2022
, “
Coupling of Mechanical Deformation and Electromagnetic Fields in Biological Cells
,”
Rev. Mod. Phys.
,
94
(
2
), p.
025003
.
33.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
.
34.
Zhang
,
N. H.
,
Shan
,
J. Y.
, and
Xing
,
J. J.
,
2007
, “
Piezoelectric Properties of Single-Strand DNA Molecular Brush Biolayers
,”
Acta Mech. Solida Sin.
,
20
(
3
), pp.
206
210
.
35.
Liu
,
F.
,
Zhang
,
Y.
, and
Ou-Yang
,
Z. C.
,
2003
, “
Flexoelectric Origin of Nanomechanic Deflection in DNA-Microcantilever System
,”
Biosens. Bioelectron.
,
18
(
5–6
), pp.
655
660
.
36.
Shen
,
G.
,
Tercero
,
N.
,
Gaspar
,
M. A.
,
Varughese
,
B.
,
Shepard
,
K.
, and
Levicky
,
R.
,
2006
, “
Charging Behavior of Single-Stranded DNA Polyelectrolyte Brushes
,”
J. Am. Chem. Soc.
,
128
(
26
), pp.
8427
8433
.
37.
Raphael
,
R. M.
,
Popel
,
A. S.
, and
Brownell
,
W. E.
,
2000
, “
A Membrane Bending Model of Outer Hair Cell Electromotility
,”
Biophys. J.
,
78
(
6
), pp.
2844
2862
.
38.
Qi
,
L.
,
Zhou
,
S.
, and
Li
,
A.
,
2016
, “
Size-Dependent Bending of an Electro-Elastic Bilayer Nanobeam Due to Flexoelectricity and Strain Gradient Elastic Effect
,”
Compos. Struct.
,
135
, pp.
167
175
.
39.
Li
,
A.
,
Zhou
,
S.
,
Zhou
,
S.
, and
Wang
,
B.
,
2014
, “
Size-Dependent Analysis of a Three-Layer Microbeam Including Electromechanical Coupling
,”
Compos. Struct.
,
116
, pp.
120
127
.
40.
Gorthi
,
S. R.
,
Gaikwad
,
H. S.
,
Mondal
,
P. K.
, and
Biswas
,
G.
,
2020
, “
Surface Tension Driven Filling in a Soft Microchannel: Role of Streaming Potential
,”
Ind. Eng. Chem. Res.
,
59
(
9
), pp.
3839
3853
.
41.
Gopmandal
,
P. P.
,
De
,
S.
,
Bhattacharyya
,
S.
, and
Ohshima
,
H.
,
2020
, “
Impact of Ion-Steric and Ion-Partitioning Effects on Electrophoresis of Soft Particles
,”
Phys. Rev. E
,
102
(
3
), p.
032601
.
42.
Zhang
,
N. H.
,
Wu
,
J. Z.
,
Meng
,
W. L.
, and
Tan
,
Z. Q.
,
2016
, “
Effect of Surface Charge State on the Surface Stress of a Microcantilever
,”
Nanotechnology
,
27
(
14
), p.
144001
.
43.
Rekesh
,
D.
,
Lyubchenko
,
Y.
,
Shlyakhtenko
,
L. S.
, and
Lindsay
,
S. M.
,
1996
, “
Scanning Tunneling Microscopy of Mercapto-Hexyl-Oligonucleotides Attached to Gold
,”
Biophys. J.
,
71
(
2
), pp.
1079
1086
.
44.
Maurya
,
S. K.
,
Sarkar
,
S.
,
Mondal
,
H. K.
,
Ohshima
,
H.
, and
Gopmandal
,
P. P.
,
2022
, “
Electrophoresis of Soft Particles With Hydrophobic Inner Core Grafted With pH-Regulated and Highly Charged Polyelectrolyte Layer
,”
Electrophoresis
,
43
(
5–6
), pp.
757
766
.
45.
Mahapatra
,
P.
,
Ohshima
,
H.
, and
Gopmandal
,
P. P.
,
2021
, “
Electrophoresis of Liquid-Layer Coated Particles: Impact of Ion Partitioning and Ion Steric Effects
,”
Langmuir
,
37
(
38
), pp.
11316
11329
.
46.
Xie
,
Z.
,
2022
, “
Electrokinetic Energy Conversion of Core-Annular Flow in a Slippery Nanotube
,”
Colloids Surf., A
,
642
, p.
128723
.
47.
Arroyo-Hernandez
,
M.
,
Tamayo
,
J.
, and
Costa-Kramer
,
J. L.
,
2009
, “
Stress and DNA Assembly Differences on Cantilevers Gold Coated by Resistive and E-Beam Evaporation Techniques
,”
Langmuir
,
25
(
18
), pp.
10633
10638
.
48.
Yue
,
M.
,
Lin
,
H.
,
Dedrick
,
D. E.
,
Satyanarayana
,
S.
,
Majumdar
,
A.
,
Bedekar
,
A. S.
,
Jenkins
,
J. W.
, and
Sundaram
,
S.
,
2004
, “
A 2-D Microcantilever Array for Multiplexed Biomolecular Analysis
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
290
299
.
49.
Arroyo-Hernandez
,
M.
,
Svec
,
M.
,
Rogero
,
C.
,
Briones
,
C.
,
Martin-Gago
,
J. A.
, and
Costa-Kramer
,
J. L.
,
2014
, “
Structural Modifications of Gold Thin Films Produced by Thiol-Derivatized Single-Stranded DNA Immobilization
,”
J. Phys. Condens. Matter
,
26
(
5
), p.
055010
.
50.
Spampinato
,
S.
,
Cacciato
,
G.
,
Zimbone
,
M.
,
Ruffino
,
F.
, and
Grimaldi
,
M. G.
,
2015
, “
Quantitative Evaluation of Surface Topographical Changes of Au Thin Films After DNA Immobilization
,”
Chem. Phys. Lett.
,
639
, pp.
120
125
.
51.
Eisenstein
,
M.
,
2017
, “
Mechanobiology: A Measure of Molecular Muscle
,”
Nature
,
544
(
7649
), pp.
255
257
.
52.
Saha
,
S.
,
Gopmandal
,
P. P.
, and
Ohshima
,
H.
,
2019
, “
Electroosmotic Flow and Transport of Ionic Species Through a Slit Soft Nanochannel Filled With General Electrolytes
,”
Meccanica
,
54
(
14
), pp.
2131
2149
.
53.
Eom
,
K.
,
Jung
,
H.
,
Jeong
,
S.
,
Kim
,
C.
,
Yoon
,
D.
, and
Kwon
,
T.
,
2011
, “
Nanomechanical Motion of Microcantilevers Driven by Ion-Induced DNA Conformational Transitions
,”
BioNanoScience
,
1
(
4
), pp.
117
122
.
You do not currently have access to this content.