Abstract

This paper provides a specific analysis strategy for tensegrity prism units with different complexities and connectivity. Through the nodal coordinate matrix and connectivity matrix, we can establish the equilibrium equation of the structure in the self-equilibrium state, and the equilibrium matrix can be obtained. The Singular Value Decomposition (SVD) method can find the self-equilibrium configuration. The torsional angle formula between the upper and bottom surfaces of the prismatic tensegrity structure, which includes complexity and connectivity, can be obtained through the SVD form-finding method. According to the torsional angle formula of the self-equilibrium configuration, we carry out the mechanical analysis of the single node, and the force density relationship between elements is gained. As one of the standards, the mass is used to evaluate the light structure. This paper also studied the minimal mass of the self-equilibrium tensegrity structure with the same complexity in different connectivity and got the minimal mass calculation formula. A six-bar tensegrity prism unit is investigated in this paper, which shows the feasibility of systematic analysis of prismatic structures. This paper provides a theoretical reference for prismatic tensegrity units.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Zhang
,
L. Y.
,
Li
,
S. X.
,
Zhu
,
S. X.
,
Zhang
,
B.-Y.
, and
Xu
,
G.-K.
,
2018
, “
Automatically Assembled Large-Scale Tensegrities by Truncated Regular Polyhedral and Prismatic Elementary Cells
,”
Compos. Struct.
,
184
, pp.
30
40
.
2.
Mirats Tur
,
J. M.
, and
Juan
,
S. H.
,
2009
, “
Tensegrity Frameworks: Dynamic Analysis Review and Open Problems
,”
Mech. Mach. Theory
,
44
(
1
), pp.
1
18
.
3.
Nagase
,
K.
,
Yamashita
,
T.
, and
Kawabata
,
N.
,
2016
, “
On a Connectivity Matrix Formula for Tensegrity Prism Plates
,”
Mech. Res. Commun.
,
77
, pp.
29
43
.
4.
Paul
,
C.
,
Roberts
,
J. W.
,
Lipson
,
H.
, et al,
2005
, “
Gait Production in a Tensegrity Based Robot
,”
ICAR'05. Proceedings of the 12th International Conference on Advanced Robotics, 2005
,
Seattle, WA
,
July 18–20
,
IEEE
, pp.
216
222
.
5.
Wang
,
X.
,
Ling
,
Z.
,
Qiu
,
C.
,
Song
,
Z.
, and
Kang
,
R.
,
2022
, “
A Four-Prism Tensegrity Robot Using a Rolling Gait for Locomotion
,”
Mech. Mach. Theory
,
172
, p.
104828
.
6.
Li
,
W. Y.
,
Nabae
,
H.
,
Endo
,
G.
, and
Suzumori
,
K.
,
2020
, “
New Soft Robot Hand Configuration With Combined Biotensegrity and Thin Artificial Muscle
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
4345
4351
.
7.
Feron
,
J.
,
Boucher
,
L.
,
Denoël
,
V.
, and
Latteur
,
P.
,
2019
, “
Optimization of Footbridges Composed of Prismatic Tensegrity Modules
,”
J. Bridge Eng.
,
24
(
12
), p.
04019112
.
8.
Wang
,
Y.
,
Zhao
,
W.
,
Rimoli
,
J. J.
,
Zhu
,
R.
, and
Hu
,
G.
,
2020
, “
Prestress-Controlled Asymmetric Wave Propagation and Reciprocity-Breaking in Tensegrity Metastructure
,”
Extreme Mech. Lett.
,
37
, p.
100724
.
9.
Xiaodong
,
F.
,
Jinrong
,
H.
,
Jianbo
,
S.
,
Weijia
,
Y.
, and
Yaozhi
,
L.
,
2022
, “
Morphology Design and Analysis of Novel Annular Tensegrity Dome Structures
,”
Prog. Steel Build. Struct.
,
24
(
03
), pp.
80
89
.
10.
Ma
,
S.
,
Chen
,
M.
, and
Skelton
,
R. E.
,
2022
, “
Tensegrity System Dynamics Based on Finite Element Method
,”
Compos. Struct.
,
280
, p.
114838
.
11.
Modano
,
M.
,
Mascolo
,
I.
,
Fraternali
,
F.
, and
Bieniek
,
Z.
,
2018
, “
Numerical and Analytical Approaches to the Self-Equilibrium Problem of Class θ=1 Tensegrity Metamaterials
,”
Front. Mater.
,
5
, p.
5
.
12.
Williamson
,
D.
,
Skelton
,
R. E.
, and
Han
,
J.
,
2003
, “
Equilibrium Conditions of a Tensegrity Structure
,”
Int. J. Solids Struct.
,
40
(
23
), pp.
6347
6367
.
13.
Zhang
,
L. Y.
,
Jiang
,
J. H.
,
Wei
,
K.
, et al
,
2021
, “
Self-Equilibrium and Super-Stability of Rhombic Truncated Regular Tetrahedral and Cubic Tensegrities Using Symmetry-Adapted Force-Density Matrix Method
,”
Int. J. Solids Struct.
,
233
, p.
111215
.
14.
Li
,
Y.
,
Feng
,
X. Q.
,
Cao
,
Y. P.
, and
Gao
,
H.
,
2010
, “
A Monte Carlo Form-Finding Method for Large Scale Regular and Irregular Tensegrity Structures
,”
Int. J. Solids Struct.
,
47
(
14–15
), pp.
1888
1898
.
15.
Lee
,
S.
,
Lee
,
J.
, and
Kang
,
J.
,
2017
, “
A Genetic Algorithm Based Form-Finding of Tensegrity Structures With Multiple Self-Stress States
,”
J. Asian Archit. Build. Eng.
,
16
(
1
), pp.
155
162
.
16.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2021
, “
Form-finding of Tensegrity Structures via Rank Minimization of Force Density Matrix
,”
Eng. Struct.
,
227
, p.
111419
.
17.
Tran
,
H. C.
, and
Lee
,
J.
,
2010
, “
Advanced Form-Finding of Tensegrity Structures
,”
Comput. Struct.
,
88
(
3–4
), pp.
237
246
.
18.
Cai
,
J.
, and
Feng
,
J.
,
2015
, “
Form-Finding of Tensegrity Structures Using an Optimization Method
,”
Eng. Struct.
,
104
, pp.
126
132
.
19.
Skelton
,
R. E.
,
Fraternali
,
F.
,
Carpentieri
,
G.
, and
Micheletti
,
A.
,
2014
, “
Minimum Mass Design of Tensegrity Bridges With Parametric Architecture and Multiscale Complexity
,”
Mech. Res. Commun.
,
58
, pp.
124
132
.
20.
Carpentieri
,
G.
,
Skelton
,
R. E.
, and
Fraternali
,
F.
,
2015
, “
Minimum Mass and Optimal Complexity of Planar Tensegrity Bridges
,”
Int. J. Space Struct.
,
30
(
3–4
), pp.
221
243
.
21.
Chen
,
M.
, and
Skelton
,
R. E.
,
2020
, “
A General Approach to Minimal Mass Tensegrity
,”
Compos. Struct.
,
248
, p.
112454
.
22.
Chen
,
M.
,
Bai
,
X.
, and
Skelton
,
R. E.
,
2023
, “
Minimal Mass Design of Clustered Tensegrity Structures
,”
Comput. Methods Appl. Mech. Eng.
,
404
, p.
115832
.
23.
Ma
,
S.
,
Chen
,
M.
, and
Skelton
,
R. E.
,
2020
, “
Design of a New Tensegrity Cantilever Structure
,”
Compos. Struct.
,
243
, p.
112188
.
24.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2021
, “
Minimal Mass Design of Active Tensegrity Structures
,”
Eng. Struct.
,
234
, p.
111965
.
25.
Ani
,
L.
,
Heping
,
L.
,
Skelton
,
R. E.
, and
Shijun
,
C.
,
2017
, “
The Theory of Basic Tensegrity Unit Stable Forming
,”
J. Mech. Eng.
,
53
(
23
), p.
62
.
26.
Fraddosio
,
A.
,
Pavone
,
G.
, and
Piccioni
,
M. D.
,
2019
, “
Minimal Mass and Self-Stress Analysis for Innovative V-Expander Tensegrity Cells
,”
Compos. Struct.
,
209
, pp.
754
774
.
27.
Golub
,
G. H.
, and
Reinsch
,
C.
,
1971
, “
Singular Value Decomposition and Least Squares Solutions
,”
Linear Algebra
,
2
, pp.
134
151
.
28.
Kalman
,
D.
,
1996
, “
A Singularly Valuable Decomposition: the SVD of a Matrix
,”
Coll. Math. J.
,
27
(
1
), pp.
2
23
.
29.
Hartley
,
R.
, and
Zisserman
,
A.
,
2003
,
Multiple View Geometry in Computer Vision
,
Cambridge University Press
, New York.
30.
Cao
,
Z.
,
Luo
,
A.
,
Feng
,
Y.
, and
Liu
,
H.
,
2023
, “
Minimal Mass of Prismatic Tensegrity Structures
,”
Eng. Computation.
,
40
(
5
), pp.
1084
1100
.
31.
Motro
,
R.
,
2003
,
Tensegrity: Structural Systems for the Future
,
Elsevier
,
New York
.
You do not currently have access to this content.