Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

A direct approach is developed using Streamline Upwind Petrov Galerkin (SUPG) concepts to determine the spatially varying property distribution in a nominally heterogeneous material. The approach is based on successful development of a SUPG-stabilized inverse finite element approach to solve the differential equations of equilibrium in terms of material properties, resulting in a matrix form [A] {E} = {R}, where [A] is a known function of measured axial strains (e.g., from StereoDIC) and axial positions, {R} is a known function of axial body forces, applied loads and reactions, and {E} is a vector of unknown material properties at discrete axial locations. Theoretical and computational developments for the SUPG-stabilized approach are described in detail for one-dimensional applications (e.g., heterogeneous tensile/compression specimens, tensile/compressive surfaces of beams). Property predictions using the SUPG method with analytic strains and additive Gaussian noise are shown to be in excellent agreement with known property values, whereas predictions using the classical Bubnov–Galerkin method exhibit large, spurious oscillations in the predicted material properties. To demonstrate the methodology using experimental measurements, a 3D-printed heterogeneous tensile specimen with independently measured material properties is tested and full-field strains measured at several load levels. Results confirm that SUPG finite element property predictions are in very good agreement with independently determined values at each load level along the specimen length, providing confidence that the SUPG FE analysis framework developed in this work is stable and extendable to multiple dimensions.

References

1.
Ajdari
,
A.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2011
, “
Dynamic Crushing and Energy Absorption of Regular, Irregular and Functionally Graded Cellular Structures
,”
Int. J. Solids Struct.
,
48
(
3–4
), pp.
506
516
.
2.
Li
,
Y.
,
Feng
,
Z.
,
Hao
,
L.
,
Huang
,
L.
,
Xin
,
C.
,
Wang
,
Y.
,
Bilotti
,
E.
, et al
,
2020
, “
A Review on Functionally Graded Materials and Structures via Additive Manufacturing: From Multi-Scale Design to Versatile Functional Properties
,”
Adv. Mater. Technol.
,
5
(
6
), p.
1900981
.
3.
Weerasooriya
,
T.
, and
Alexander
,
S.
,
2021
, “
Mechanism and Microstructure-Based Concept to Predict Skull Fracture Using a Hybrid-Experimental-Modeling-Computational Approach
,”
J. Mech. Behav. Biomed. Mater.
,
121
, p.
104599
.
4.
Moysidou
,
C.-M.
,
Barberio
,
C.
, and
Owens
,
R. M.
,
2021
, “
Advances in Engineering Human Tissue Models
,”
Front. Bioeng. Biotechnol.
,
8
, p.
620962
.
5.
Chu
,
T. C.
,
Ranson
,
W. F.
, and
Sutton
,
M. A.
,
1985
, “
Applications of Digital-Image-Correlation Techniques to Experimental Mechanics
,”
Exp. Mech.
,
25
(
3
), pp.
232
244
.
6.
Sutton
,
M. A.
,
McNeill
,
S. R.
,
Helm
,
J. D.
, and
Chao
,
Y. J.
,
2000
, “Advances in Two-Dimensional and Three-Dimensional Computer Vision,”
Photomechanics
, Vol. 77,
Springer
, pp.
323
372
.
7.
Sutton
,
M. A.
,
Matta
,
F.
,
Rizos
,
D.
,
Ghorbani
,
R.
,
Rajan
,
S.
,
Mollenhauer
,
D. H.
,
Schreier
,
H. W.
, and
Lasprilla
,
A. O.
,
2017
, “
Recent Progress in Digital Image Correlation: Background and Developments Since the 2013 WM Murray Lecture
,”
Exp. Mech.
,
57
(
1
), pp.
1
30
.
8.
Hild
,
F.
, and
Roux
,
S.
,
2006
, “
Digital Image Correlation: From Displacement Measurement to Identification of Elastic Properties—A Review
,”
Strain
,
42
(
2
), pp.
69
80
.
9.
Fayad
,
S. S.
,
Jones
,
E. M. C.
,
Seidl
,
D. T.
,
Reu
,
P. L.
, and
Lambros
,
J.
,
2023
, “
On the Importance of Direct-Levelling for Constitutive Material Model Calibration Using Digital Image Correlation and Finite Element Model Updating
,”
Exp. Mech.
,
63
(
3
), pp.
467
484
.
10.
Ienny
,
P.
,
Caro-Bretelle
,
A.-S.
, and
Pagnacco
,
E.
,
2009
, “
Identification From Measurements of Mechanical Fields by Finite Element Model Updating Strategies: A Review
,”
Eur. J. Comput. Mech./Rev. Eur. Méc. Num.
,
18
(
3–4
), pp.
353
376
.
11.
Mathieu
,
F.
,
Leclerc
,
H.
,
Hild
,
F.
, and
Roux
,
S.
,
2015
, “
Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC
,”
Exp. Mech.
,
55
(
1
), pp.
105
119
.
12.
Neggers
,
J.
,
Hoefnagels
,
J. P.
,
Geers
,
M. G. D.
,
Hild
,
F.
, and
Roux
,
S.
,
2015
, “
Time-Resolved Integrated Digital Image Correlation
,”
Int. J. Numer. Methods Eng.
,
103
(
3
), pp.
157
182
.
13.
Bertin
,
M.
,
Hild
,
F.
,
Roux
,
S.
,
Mathieu
,
F.
,
Leclerc
,
H.
, and
Aimedieu
,
P.
,
2016
, “
Integrated Digital Image Correlation Applied to Elastoplastic Identification in a Biaxial Experiment
,”
J. Strain Anal. Eng. Des.
,
51
(
2
), pp.
118
131
.
14.
Hartmann
,
S.
, and
Gilbert
,
R. R.
,
2021
, “
Material Parameter Identification Using Finite Elements With Time-Adaptive Higher-Order Time Integration and Experimental Full-Field Strain Information
,”
Comput. Mech.
,
68
(
3
), pp.
633
650
.
15.
Guery
,
A.
,
Hild
,
F.
,
Latourte
,
F.
, and
Roux
,
S.
,
2016
, “
Identification of Crystal Plasticity Parameters Using DIC Measurements and Weighted FEMU
,”
Mech. Mater.
,
100
, pp.
55
71
.
16.
Cameron
,
B. C.
, and
Cem Tasan
,
C.
,
2021
, “
Full-Field Stress Computation From Measured Deformation Fields: A Hyperbolic Formulation
,”
J. Mech. Phys. Solids
,
147
, p.
104186
.
17.
Rajan-Kattil
,
S.
,
Sutton
,
M. A.
,
Sockalingam
,
S.
,
Thomas
,
F.
,
Weerasooriya
,
T.
, and
Alexander
,
S.
,
2022
, “
Direct Material Property Determination: One-Dimensional Formulation Utilising Full-Field Deformation Measurements
,”
Strain
,
58
(
6
), p.
e12427
.
18.
Rajan Kattil
,
S.
,
2022
, “
Use of DIC Measurements With Finite Element Models For Direct Heterogeneous Material Property Determination and Wrinkle Formation During Automated Fiber Placement
,” Doctoral dissertation, Retrieved from https://scholarcommons.sc.edu/etd/7071.
19.
Rajan Kattil
,
S.
,
Sockalingam
,
S.
,
Sutton
,
M. A.
, and
Weerasooriya
,
T.
, “
Finite Element Based Material Property Identification Utilizing Full-Field Deformation Measurements
,”
Proceedings of the Society for Experimental Mechanics Annual Conference and Exposition
,
Orlando, FL
,
June 15
.
20.
Sockalingam
,
S.
,
Kodagali
,
K.
,
Sutton
,
M. A.
,
Miller
,
D.
, and
Weerasooriya
,
T.
,
2023
, “
Direct Spatio-Temporal Stress Field Determination Combining Full-Field Deformation Measurements and Explicit Finite Element Method: Concept Verification
,”
Extreme Mech. Lett.
,
65
, p.
102106
.
21.
Oden
,
J. T.
, and
Reddy
,
J. N.
,
2012
,
Variational Methods in Theoretical Mechanics
,
Springer Science & Business Media
,
Berlin, Heidelberg
.
22.
Griffiths
,
D. F.
, and
Lorenz
,
J.
,
1978
, “
An Analysis of the Petrov–Galerkin Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
14
(
1
), pp.
39
64
.
23.
Bazilevs
,
Y.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2013
,
Computational Fluid-Structure Interaction: Methods and Applications
,
John Wiley & Sons
.
24.
Bertrand
,
F.
,
Demkowicz
,
L.
,
Gopalakrishnan
,
J.
, and
Heuer
,
N.
,
2019
, “
Recent Advances in Least-Squares and Discontinuous Petrov–Galerkin Finite Element Methods
,”
Comput. Methods Appl. Math.
,
19
(
3
), pp.
395
397
.
25.
Brooks
,
A. N.
, and
Hughes
,
T. J.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.
26.
Reddy
,
J. N.
,
2019
,
Introduction to the Finite Element Method
,
McGraw-Hill Education
.
27.
Chua
,
C. K.
, and
Leong
,
K. F.
,
2014
,
3D Printing and Additive Manufacturing: Principles and Applications (With Companion Media Pack)-of Rapid Prototyping
,
World Scientific Publishing Company
.
28.
Jones
,
E. M.
, and
Iadicola
,
M. A.
,
2018
, “
A Good Practices Guide for Digital Image Correlation
,”
International Digital Image Correlation Society
,
10
, pp. 1–110.
29.
Rajan-Kattil
,
S.
,
Sutton
,
M. A.
,
Wehbe
,
R.
,
Tatting
,
B.
,
Gürdal
,
Z.
,
Kidane
,
A.
, and
Harik
,
R.
,
2019
, “
Experimental Investigation of Prepreg Slit Tape Wrinkling During Automated Fiber Placement Process Using StereoDIC
,”
Composites, Part B
,
160
, pp.
546
557
.
You do not currently have access to this content.