Abstract

Mechanical metamaterials with multiple stable configurations offer a promising avenue for the design and development of adaptable materials with unprecedented levels of control over physical properties. Specifically, arrays of bistable beam elements represent a unique metamaterial platform with tunable transition waves offering means of passive control, sensing, and memory effects of environmental conditions. Although previous studies have mainly investigated transition waves triggered by a static input in nonlinear metamaterials, the dynamic properties of these structures and the interference of colliding waves are still unknown. Here, we investigate the dynamic properties of arrays of bistable beam elements which are important keys in the further development of applications of these metastructures. We determine the critical force and the optimal location to apply a force to trigger a transition wave and characterize the natural frequencies of the metamaterial. Moreover, we study the interference between two transition waves simultaneously actuated at both ends of the one-dimensional multistable array. Our new insights on the nonlinear dynamic responses of multistable metamaterials pave the way for the ability to design and program adaptable structures with enhanced energy absorption, vibration isolation, and wave steering capabilities.

References

1.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
Van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nature Rev. Mater.
,
2
(
11
), p.
17066
.
2.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
.
3.
Tan
,
X.
,
Chen
,
S.
,
Wang
,
B.
,
Zhu
,
S.
,
Wu
,
L.
, and
Sun
,
Y.
,
2019
, “
Design, Fabrication, and Characterization of Multistable Mechanical Metamaterials for Trapping Energy
,”
Extreme Mech. Lett.
,
28
, pp.
8
21
.
4.
Deng
,
B.
,
Raney
,
J. R.
,
Bertoldi
,
K.
, and
Tournat
,
V.
,
2021
, “
Nonlinear Waves in Flexible Mechanical Metamaterials
,”
J. Appl. Phys.
,
130
(
4
), p.
040901
.
5.
Yasuda
,
H.
,
Shu
,
H.
,
Jiao
,
W.
,
Tournat
,
V.
, and
Raney
,
J. R.
,
2023
, “
Nucleation of Transition Waves Via Collisions of Elastic Vector Solitons
,”
Appl. Phys. Lett.
,
123
(
5
), p.
051701
.
6.
Liu
,
W.
,
Jiang
,
H.
, and
Chen
,
Y.
,
2022
, “
3D Programmable Metamaterials Based on Reconfigurable Mechanism Modules
,”
Adv. Funct. Mater.
,
32
(
9
), p.
2109865
.
7.
Han
,
H.
,
Sorokin
,
V.
,
Tang
,
L.
, and
Cao
,
D.
,
2023
, “
Origami-Based Tunable Mechanical Memory Metamaterial for Vibration Attenuation
,”
Mech. Syst. Signal Process.
,
188
, p.
110033
.
8.
Yasuda
,
H.
,
Buskohl
,
P. R.
,
Gillman
,
A.
,
Murphey
,
T. D.
,
Stepney
,
S.
,
Vaia
,
R. A.
, and
Raney
,
J. R.
,
2021
, “
Mechanical Computing
,”
Nature
,
598
(
7879
), pp.
39
48
.
9.
Mei
,
T.
,
Meng
,
Z.
,
Zhao
,
K.
, and
Chen
,
C. Q.
,
2021
, “
A Mechanical Metamaterial With Reprogrammable Logical Functions
,”
Nat. Commun.
,
12
(
1
), p.
7234
.
10.
Fan
,
H.
,
Tian
,
Y.
,
Yang
,
L.
,
Hu
,
D.
, and
Liu
,
P.
,
2022
, “
Multistable Mechanical Metamaterials With Highly Tunable Strength and Energy Absorption Performance
,”
Mech. Adv. Mater. Struct.
,
29
(
11
), pp.
1637
1649
.
11.
Hua
,
J.
,
Zhou
,
Y.
, and
Chen
,
C. Q.
,
2024
, “
Design and Analysis of a Tunable Multistable Mechanical Metamaterial
,”
Int. J. Mech. Sci.
,
272
, p.
109170
.
12.
Yao
,
X.
,
Zhao
,
H.
,
Ma
,
R.
, and
Hu
,
N.
,
2024
, “
Manipulating Localized Geometric Characteristics in Multistable Energy-Absorbing Architected Materials
,”
Thin-Walled Struct.
,
205
, p.
112535
.
13.
Zheng
,
Z.-P.
,
Wang
,
S.-Q.
,
Wang
,
X.-C.
, and
Yue
,
W.
,
2024
, “
Compression Properties and Energy Absorption of a Novel Double Curved Beam Negative Stiffness Honeycomb Structures
,”
China Ocean Eng.
,
38
(
5
), pp.
821
837
.
14.
Nadkarni
,
N.
,
Arrieta
,
A. F.
,
Chong
,
C.
,
Kochmann
,
D. M.
, and
Daraio
,
C.
,
2016
, “
Unidirectional Transition Waves in Bistable Lattices
,”
Phys. Rev. Lett.
,
116
(
24
), p.
244501
.
15.
Deng
,
B.
,
Mo
,
C.
,
Tournat
,
V.
,
Bertoldi
,
K.
, and
Raney
,
J. R.
,
2019
, “
Focusing and Mode Separation of Elastic Vector Solitons in a 2D Soft Mechanical Metamaterial
,”
Phys. Rev. Lett.
,
123
(
2
), p.
024101
.
16.
Jin
,
L.
,
Khajehtourian
,
R.
,
Mueller
,
J.
,
Rafsanjani
,
A.
,
Tournat
,
V.
,
Bertoldi
,
K.
, and
Kochmann
,
D. M.
,
2020
, “
Guided Transition Waves in Multistable Mechanical Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
5
), pp.
2319
2325
.
17.
Liétard
,
Y.
,
Therriault
,
D.
, and
Melancon
,
D.
,
2025
, “
Exploiting Geometric Frustration in Coupled Von Mises Trusses to Program Multifunctional Mechanical Metamaterials
,”
Adv. Eng. Mater.
18.
Xin
,
X.
,
Lin
,
C.
,
Li
,
B.
,
Zhang
,
R.
,
Zeng
,
C.
,
Liu
,
L.
,
Liu
,
Y.
, and
Leng
,
J.
,
2025
, “
Multifunctional and Reprogrammable 4D Pixel Mechanical Metamaterials
,”
Int. J. Extreme Manuf.
,
7
(
1
), p.
015506
.
19.
Gomez
,
M.
,
Moulton
,
D. E.
, and
Vella
,
D.
,
2017
, “
Passive Control of Viscous Flow Via Elastic Snap-Through
,”
Phys. Rev. Lett.
,
119
(
14
), p.
144502
.
20.
Chen
,
T.
,
Pauly
,
M.
, and
Reis
,
P. M.
,
2021
, “
A Reprogrammable Mechanical Metamaterial With Stable Memory
,”
Nature
,
589
(
7842
), pp.
386
390
.
21.
Raney
,
J. R.
,
Nadkarni
,
N.
,
Daraio
,
C.
,
Kochmann
,
D. M.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2016
, “
Stable Propagation of Mechanical Signals in Soft Media Using Stored Elastic Energy
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
35
), pp.
9722
9727
.
22.
Mofatteh
,
H.
,
Shahryari
,
B.
,
Mirabolghasemi
,
A.
,
Seyedkanani
,
A.
,
Shirzadkhani
,
R.
,
Desharnais
,
G.
, and
Akbarzadeh
,
A.
,
2022
, “
Programming Multistable Metamaterials to Discover Latent Functionalities
,”
Adv. Sci.
,
9
(
33
), p.
2202883
.
23.
Librandi
,
G.
,
Tubaldi
,
E.
, and
Bertoldi
,
K.
,
2021
, “
Programming Nonreciprocity and Reversibility in Multistable Mechanical Metamaterials
,”
Nat. Commun.
,
12
(
1
), p.
3454
.
24.
Mei
,
T.
, and
Chen
,
C. Q.
,
2023
, “
In-memory Mechanical Computing
,”
Nat. Commun.
,
14
(
1
), p.
5204
.
25.
Byun
,
J.
,
Pal
,
A.
,
Ko
,
J.
, and
Sitti
,
M.
,
2024
, “
Integrated Mechanical Computing for Autonomous Soft Machines
,”
Nat. Commun.
,
15
(
1
), p.
2933
.
26.
Yasuda
,
H.
,
Korpas
,
L. M.
, and
Raney
,
J. R.
,
2020
, “
Transition Waves and Formation of Domain Walls in Multistable Mechanical Metamaterials
,”
Phys. Rev. Appl.
,
13
(
5
), p.
054067
.
27.
Jiao
,
W.
,
Shu
,
H.
,
Tournat
,
V.
,
Yasuda
,
H.
, and
Raney
,
J. R.
,
2024
, “
Phase Transitions in 2D Multistable Mechanical Metamaterials Via Collisions of Soliton-Like Pulses
,”
Nat. Commun.
,
15
(
1
), p.
333
.
28.
Brandenbourger
,
M.
,
Locsin
,
X.
,
Lerner
,
E.
, and
Coulais
,
C.
,
2019
, “
Non-Reciprocal Robotic Metamaterials
,”
Nat. Commun.
,
10
(
1
), p.
4608
.
29.
Veenstra
,
J.
,
Gamayun
,
O.
,
Guo
,
X.
,
Sarvi
,
A.
,
Meinersen
,
C. V.
, and
Coulais
,
C.
,
2024
, “
Non-Reciprocal Topological Solitons in Active Metamaterials
,”
Nature
,
627
(
8004
), pp.
528
533
.
30.
Gomez
,
M.
,
Moulton
,
D.
, and
Vella
,
D.
,
2017
, “
Critical Slowing Down in Purely Elastic “Snap-Through” Instabilities
,”
Nat. Phys.
,
13
(
2
), pp.
142
145
.
31.
Radisson
,
B.
, and
Kanso
,
E.
,
2023
, “
Elastic Snap-Through Instabilities Are Governed by Geometric Symmetries
,”
Phys. Rev. Lett.
,
130
(
23
), p.
236102
.
32.
Pal
,
A.
, and
Sitti
,
M.
,
2023
, “
Programmable Mechanical Devices Through Magnetically Tunable Bistable Elements
,”
Proc. Natl. Acad. Sci. U. S. A.
,
120
(
15
), p.
e2212489120
.
33.
Abbasi
,
A.
,
Sano
,
T. G.
,
Yan
,
D.
, and
Reis
,
P. M.
,
2023
, “
Snap Buckling of Bistable Beams Under Combined Mechanical and Magnetic Loading
,”
Phil. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
381
(
2244
), p.
20220029
.
34.
Smith
,
M. L.
,
Gao
,
J.
,
Skandani
,
A. A.
,
Deering
,
N.
,
Wang
,
D. H.
,
Sicard
,
A. A.
,
Plaver
,
M.
,
Tan
,
L. -S.
,
White
,
T. J.
, and
Shankar
,
M. R.
,
2019
, “
Tuned Photomechanical Switching of Laterally Constrained Arches
,”
Smart Mater. Struct.
,
28
(
7
), p.
075009
.
35.
Hsu
,
C.
, and
Hsu
,
W.
,
2003
, “
Instability in Micromachined Curved Thermal Bimorph Structures
,”
J. Micromech. Microeng.
,
13
(
6
), pp.
955
962
.
36.
Oshri
,
O.
,
Goncharuk
,
K.
, and
Feldman
,
Y.
,
2024
, “
Snap-Induced Flow in a Closed Channel
,”
J. Fluid Mech.
,
986
, p.
A12
.
37.
Librandi
,
G.
,
Tubaldi
,
E.
, and
Bertoldi
,
K.
,
2020
, “
Snapping of Hinged Arches Under Displacement Control: Strength Loss and Nonreciprocity
,”
Phys. Rev. E
,
101
(
5
), p.
053004
.
38.
Bonthron
,
M.
, and
Tubaldi
,
E.
,
2024
, “
Dynamic Behavior of Bistable Shallow Arches: From Intrawell to Chaotic Motion
,”
ASME J. Appl. Mech.
,
91
(
2
), p.
021010
.
39.
Miles
,
J. W.
,
1956
, “
Vibrations of Beams on Many Supports
,”
J. Eng. Mech. Div.
,
82
(
1
), p.
8631
.
40.
Doedel
,
E.
, and
Oldeman
,
B.
,
1998
, “
Continuation and Bifurcation Software for Ordinary Differential Equations
”.
41.
Dankowicz
,
H. J.
, and
Schilder
,
F.
,
2013
,
Recipes for Continuation
(
Computational Science and Engineering Series
; Vol.
11
),
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
42.
Zhang
,
Y.
,
Li
,
B.
,
Zheng
,
Q. S.
,
Genin
,
G. M.
, and
Chen
,
C. Q.
,
2019
, “
Programmable and Robust Static Topological Solitons in Mechanical Metamaterials
,”
Nat. Commun.
,
10
(
1
), p.
5605
.
43.
Hwang
,
M.
, and
Arrieta
,
A. F.
,
2018
, “
Solitary Waves in Bistable Lattices With Stiffness Grading: Augmenting Propagation Control
,”
Phys. Rev. E
,
98
(
4
), p.
042205
.
44.
Dauxois
,
T.
,
Peyrard
,
M.
, and
Dauxois
,
T.
,
2010
,
Physics of Solitons
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.