Graphical Abstract Figure

Natural bee honeycomb-inspired RH-FP: (a) conventional manmade honeycomb; (b) natural bee honeycomb with folding partition; (c) unit cell of the () main reentrant honeycomb, () folding partition, () RH-FP, and its () NPR behavior under compression in y direction; (d) top view; (e) side view; and (f) specific details of 3D printed RH-FP with α = 20.8 deg, β1 = 32.2 deg, and t/l = 0.05. Points A, B, C, and D were used to calculate Poisson's ratio in the digital image correlation method. Scale bars of (d) and (e) are 3 mm and for (f) is 100 μm.

Graphical Abstract Figure

Natural bee honeycomb-inspired RH-FP: (a) conventional manmade honeycomb; (b) natural bee honeycomb with folding partition; (c) unit cell of the () main reentrant honeycomb, () folding partition, () RH-FP, and its () NPR behavior under compression in y direction; (d) top view; (e) side view; and (f) specific details of 3D printed RH-FP with α = 20.8 deg, β1 = 32.2 deg, and t/l = 0.05. Points A, B, C, and D were used to calculate Poisson's ratio in the digital image correlation method. Scale bars of (d) and (e) are 3 mm and for (f) is 100 μm.

Close modal

Abstract

Honeycomb structures, inspired by bee honeycomb, are one of the most efficient engineering materials. They were usually used as 2D honeycomb cores and honeycomb sandwich panels. However, a natural bee honeycomb is a 3D cellular material with a folding partition. Herein, by introducing a folding partition in a reentrant honeycomb, we proposed a class of 3D closed-cell plate-based mechanical metamaterials with negative Poisson's ratio (NPR). Ultrahigh stiffness, 36% greater than the Hashin–Shtrikman upper bound, and excellent load-bearing capability, 2 × 105 times its own weight, has been observed in the compression of these 3D plate-based NPR metamaterials. The NPR behavior of these materials is found to be essentially governed by the NPR mechanism of the reentrant structure. The excellent stiffness and strength in turn drive from both the excellent load bearing of the augmented structure and the NPR behavior of the whole structure. Overall, the proposed strategy paves the way for designing 3D plate-based NPR metamaterials with superior mechanical properties and could be employed in civil engineering structures, cores of military armors, as well as functional sensing devices.

References

1.
Wegst
,
U. G.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater.
,
14
(
1
), pp.
23
36
.
2.
Fan
,
T. X.
,
Chow
,
S. K.
, and
Zhang
,
D.
,
2009
, “
Biomorphic Mineralization: From Biology to Materials
,”
Prog. Mater. Sci.
,
54
(
5
), pp.
542
659
.
3.
Terris
,
B. D.
, and
Thomson
,
T.
,
2005
, “
Nanofabricated and Self-Assembled Magnetic Structures as Data Storage Media
,”
J. Phys. D: Appl. Phys.
,
38
(
12
), p.
R199
R222
.
4.
Vukusic
,
P.
, and
Sambles
,
J. R.
,
2003
, “
Photonic Structures in Biology
,”
Nature
,
424
(
6950
), pp.
852
855
.
5.
Gao
,
H.
,
Ji
,
B.
,
Jäger
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
,
2003
, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci. U. S. A.
,
100
(
10
), pp.
5597
5600
.
6.
Song
,
K.
,
Li
,
D.
,
Zhang
,
C.
,
Liu
,
T.
,
Tang
,
Y.
,
Xie
,
Y. M.
, and
Liao
,
W.
,
2023
, “
Bio-Inspired Hierarchical Honeycomb Metastructures With Superior Mechanical Properties
,”
Compos. Struct
,
304
(Part 2), p.
116452
.
7.
Zhang
,
X.
,
Wang
,
Y.
,
Ding
,
B.
, and
Li
,
X.
,
2020
, “
Design, Fabrication, and Mechanics of 3D Micro-/Nanolattices
,”
Small
,
16
(
15
), p.
1902842
.
8.
Evans
,
K. E.
, and
Alderson
,
A.
,
2000
, “
Auxetic Materials: Functional Materials and Structures From Lateral Thinking!
,”
Adv. Mater.
,
12
(
9
), pp.
617
628
.
9.
Liu
,
J.
,
Yan
,
D.
,
Pang
,
W.
, and
Zhang
,
Y.
,
2021
, “
Design, Fabrication and Applications of Soft Network Materials
,”
Mater. Today
,
49
, pp.
324
350
.
10.
Kolken
,
H. M.
, and
Zadpoor
,
A. A.
,
2017
, “
Auxetic Mechanical Metamaterials
,”
RSC Adv.
,
7
(
9
), pp.
5111
5129
.
11.
Masters
,
I. G.
, and
Evans
,
K. E.
,
1996
, “
Models for the Elastic Deformation of Honeycombs
,”
Compos. Struct.
,
35
(
4
), pp.
403
422
.
12.
Yang
,
L.
,
Harrysson
,
O.
,
West
,
H.
, and
Cormier
,
D.
,
2012
, “
Compressive Properties of Ti–6Al–4 V Auxetic Mesh Structures Made by Electron Beam Melting
,”
Acta Mater.
,
60
(
8
), pp.
3370
3379
.
13.
Schwerdtfeger
,
J.
,
Wein
,
F.
,
Leugering
,
G.
,
Singer
,
R. F.
,
Körner
,
C.
,
Stingl
,
M.
, and
Schury
,
F.
,
2011
, “
Design of Auxetic Structures Via Mathematical Optimization
,”
Adv. Mater.
,
23
(
22–23
), pp.
2650
2654
.
14.
Wojciechowski
,
K. W.
,
1989
, “
Two-Dimensional Isotropic System With a Negative Poisson Ratio
,”
Phys. Lett. A
,
137
(
1-2
), pp.
60
64
.
15.
Warmuth
,
F.
,
Osmanlic
,
F.
,
Adler
,
L.
,
Lodes
,
M. A.
, and
Körner
,
C.
,
2016
, “
Fabrication and Characterisation of a Fully Auxetic 3D Lattice Structure Via Selective Electron Beam Melting
,”
Smart Mater. Struct.
,
26
(
2
), p.
025013
.
16.
Grima
,
J. N.
,
Jackson
,
R.
,
Alderson
,
A.
, and
Evans
,
K. E.
,
2000
, “
Do Zeolites Have Negative Poisson's Ratios?
,”
Adv. Mater.
,
12
(
24
), pp.
1912
1918
.
17.
Han
,
S. C.
,
Kang
,
D. S.
, and
Kang
,
K.
,
2019
, “
Two Nature-Mimicking Auxetic Materials With Potential for High Energy Absorption
,”
Mater. Today
,
26
, pp.
30
39
.
18.
Larsen
,
U. D.
,
Signund
,
O.
, and
Bouwsta
,
S.
,
1997
, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson's Ratio
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
99
106
.
19.
Yang
,
H.
,
Wang
,
B.
, and
Ma
,
L.
,
2019
, “
Mechanical Properties of 3D Double-U Auxetic Structures
,”
Int. J. Solids Struct.
,
180
, pp.
13
29
.
20.
Grima
,
J. N.
,
Gatt
,
R.
,
Alderson
,
A.
, and
Evans
,
K. E.
,
2005
, “
On the Potential of Connected Stars as Auxetic Systems
,”
Mol. Simul.
,
31
(
13
), pp.
925
935
.
21.
Li
,
X.
,
Peng
,
W.
,
Wu
,
W.
,
Xiong
,
J.
, and
Lu
,
Y.
,
2023
, “
Auxetic Mechanical Metamaterials: From Soft to Stiff
,”
Int. J. Extreme Manuf.
,
5
(
4
), p.
042003
.
22.
Lu
,
Z. X.
,
Li
,
X.
,
Yang
,
Z. Y.
, and
Xie
,
F.
,
2016
, “
Novel Structure With Negative Poisson's Ratio and Enhanced Young's Modulus
,”
Compos. Struct.
,
138
, pp.
243
252
.
23.
Cabras
,
L.
, and
Brun
,
M.
,
2016
, “
A Class of Auxetic Three-Dimensional Lattices
,”
J. Mech. Phys. Solids
,
91
, pp.
56
72
.
24.
Li
,
X.
,
Wang
,
Q.
,
Yang
,
Z.
, and
Lu
,
Z.
,
2019
, “
Novel Auxetic Structures With Enhanced Mechanical Properties
,”
Extreme Mech. Lett.
,
27
, pp.
59
65
.
25.
Gao
,
Y.
,
Wu
,
Q.
,
Wei
,
X.
,
Zhou
,
Z.
, and
Xiong
,
J.
,
2020
, “
Composite Tree-Like Re-Entrant Structure With High Stiffness and Controllable Elastic Anisotropy
,”
Int. J. Solids Struct.
,
206
, pp.
170
182
.
26.
Gao
,
Y.
,
Zhou
,
Z.
,
Hu
,
H.
, and
Xiong
,
J.
,
2021
, “
New Concept of Carbon Fiber Reinforced Composite 3D Auxetic Lattice Structures Based on Stretching-Dominated Cells
,”
Mech. Mater.
,
152
, p.
103661
.
27.
Fu
,
M. H.
,
Chen
,
Y.
, and
Hu
,
L. L.
,
2017
, “
Bilinear Elastic Characteristic of Enhanced Auxetic Honeycombs
,”
Compos. Struct.
,
175
, pp.
101
110
.
28.
Wang
,
H.
,
Lu
,
Z.
,
Yang
,
Z.
, and
Li
,
X.
,
2019
, “
A Novel Re-Entrant Auxetic Honeycomb With Enhanced In-Plane Impact Resistance
,”
Compos. Struct.
,
208
, pp.
758
770
.
29.
Lu
,
Z.
,
Wang
,
Q.
,
Li
,
X.
, and
Yang
,
Z.
,
2017
, “
Elastic Properties of Two Novel Auxetic 3D Cellular Structures
,”
Int. J. Solids Struct.
,
124
, pp.
46
56
.
30.
Noronha
,
J.
,
Dash
,
J.
,
Rogers
,
J.
,
Leary
,
M.
,
Brandt
,
M.
, and
Qian
,
M.
,
2023
, “
Titanium Multi-topology Metamaterials With Exceptional Strength
,”
Adv. Mater.
,
36
(
34
), p.
2308715
.
31.
Berger
,
J. B.
,
Wadley
,
H. N. G.
, and
McMeeking
,
R. M.
,
2017
, “
Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness
,”
Nature
,
543
(
7646
), pp.
533
537
.
32.
Crook
,
C.
,
Bauer
,
J.
,
Guell Izard
,
A.
,
Santos de Oliveira
,
C.
,
Martins de Souza e Silva
,
J.
,
Berger
,
J. B.
, and
Valdevit
,
L.
,
2020
, “
Plate-Nanolattices at the Theoretical Limit of Stiffness and Strength
,”
Nat. Commun.
,
11
(
1
), pp.
1
11
.
33.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
.
34.
Suquet
,
P. M.
,
1993
, “
Overall Potentials and Extremal Surfaces of Power Law or Ideally Plastic Composites
,”
J. Mech. Phys. Solids
,
41
(
6
), pp.
981
1002
.
35.
Tancogne-Dejean
,
T.
,
Diamantopoulou
,
M.
,
Gorji
,
M. B.
,
Bonatti
,
C.
, and
Mohr
,
D.
,
2018
, “
3D Plate-Lattices: An Emerging Class of Low-Density Metamaterial Exhibiting Optimal Isotropic Stiffness
,”
Adv. Mater.
,
30
(
45
), p.
1803334
.
36.
Gurtner
,
G.
, and
Durand
,
M.
,
2014
, “
Stiffest Elastic Networks
,” Proc. R. Soc. A: Math.
Phys. Eng. Sci.
,
470
(
2164
), p.
20130611
.
37.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1747
1769
.
38.
Kolken
,
H. M.
,
Janbaz
,
S.
,
Leeflang
,
S. M.
,
Lietaert
,
K.
,
Weinans
,
H. H.
, and
Zadpoor
,
A. A.
,
2018
, “
Rationally Designed Meta-Implants: A Combination of Auxetic and Conventional Meta-Biomaterials
,”
Mater. Horiz.
,
5
(
1
), pp.
28
35
.
39.
Elipe
,
JCÁ
, and
Lantada
,
A. D.
,
2012
, “
Comparative Study of Auxetic Geometries by Means of Computer-Aided Design and Engineering
,”
Smart Mater. Struct.
,
21
(
10
), p.
105004
.
40.
Friis
,
E. A.
,
Lakes
,
R. S.
, and
Park
,
J. B.
,
1988
, “
Negative Poisson's Ratio Polymeric and Metallic Foams
,”
J. Mater. Sci.
,
23
(
12
), pp.
4406
4414
.
You do not currently have access to this content.