A study on the constitutive models of tumor tissues is critical for the advancement of computational tools for clinical diagnosis and treatment plans. In this respect, continuum based constitutive models of tumor tissues applied in the computational analysis of tumor tissues are reviewed in this work. An introduction to the continuum based computational modeling of tumor tissue and a brief review of the applications of computational models in tumor diagnosis and treatment plans are presented in Sec. 1. The pathophysiology of tumor is given in Sec. 2. Continuum based constitutive models of tumor tissues are reviewed in Sec. 3 and in Sec. 4, conclusions and recommendations for the future development of tumor constitutive model are presented. It is the aim of the authors to provide a comprehensive study on the various constitutive models of tumors to enhance the application of biomechanical simulation of tumor tissues.

1.
Wasserman
,
R.
,
Acharya
,
R.
,
Sibata
,
C.
, and
Shin
,
K. H.
, 1996, “
A Patient-Specific in Vivo Tumor Model
,”
Math. Biosci.
0025-5564,
136
, pp.
111
140
.
2.
Ferrant
,
M.
,
Macq
,
B.
,
Nabavi
,
A.
, and
Warfield
,
S. K.
, 2000, “
Deformable Modeling for Characterizing Biomedical Shape Changes
,”
G.
Borgefors
,
I.
Nystrom
, and
G.
Sanniti di Baja
, eds.,
Discrete Geometry for Computer Imagery
,
Springer-Verlag
,
Berlin Heidelberg
, pp.
235
248
.
3.
Miller
,
K.
,
Taylor
,
Z.
, and
Wittek
,
A.
, 2006, “
Mathematical Models of Brain Deformation Behaviour for Computer-Integrated Neurosurgery
,” Research Report of Intelligent Systems for Medicine Laboratory, The University of Western Australia, Report No. ISML/01/2006.
4.
Samani
,
A.
,
Bishop
,
J.
, and
Plewes
,
D. B.
, 2001, “
A Constrained Modulus Reconstruction Technique for Breast Cancer Assessment
,”
IEEE Trans. Med. Imaging
0278-0062,
20
, pp.
877
885
.
5.
Azar
,
F. S.
,
Metaxas
,
D. N.
, and
Schnall
,
M. D.
, 2002, “
Methods for Modeling and Predicting Mechanical Deformations of the Breast Under External Perturbations
,”
Med. Image Anal.
1361-8415,
6
, pp.
1
27
.
6.
Wittek
,
A.
,
Kikinis
,
R.
,
Warfield
,
S. K.
, and
Miller
,
K.
, 2005, “
Brain Shift Computation Using a Fully Nonlinear Biomechanical Model
,”
Proceedings of the MICCAI, LNCS 3750
,
J.
Duncan
and
G.
Gerig
, eds.,
Springer-Verlag
,
Berlin Heidelberg
, pp.
583
590
.
7.
Hogea
,
C.
,
Biros
,
G.
,
Abraham
,
F.
, and
Davatzikos
,
C.
, 2007, “
A Robust Framework for Soft Tissue Simulations With Application to Modeling Brain Tumor Mass Effect in 3D MR Images
,”
Phys. Med. Biol.
0031-9155,
52
, pp.
6893
6908
.
8.
Wittek
,
A.
,
Hawkins
,
T.
, and
Miller
,
K.
, 2009, “
On the Unimportance of Constitutive Models in Computing Brain Deformation for Image-Guided Surgery
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
, pp.
77
84
.
9.
Miller
,
K.
,
Wittek
,
A.
,
Joldes
,
G.
,
Horton
,
A.
,
Dutta-Roy
,
T.
,
Berger
,
J.
, and
Morriss
,
L.
, 2010, “
Modelling Brain Deformations for Computer-Integrated Neurosurgery
,”
International Journal for Numerical Methods in Biomedical Engineering
,
26
, pp.
117
138
.
10.
Ophir
,
J.
,
Cespedes
,
I.
,
Maklad
,
N. F.
, and
Ponnekanti
,
H.
, 1996, “
Elastography: A Method for Imaging the Elastic Properties of Tissues In-Vivo
,”
Ultrasonic Tissue Characterization
,
Springer-Verlag
,
Tokyo
, pp.
95
123
.
11.
Righetti
,
R.
,
Srinivasan
,
S.
,
Kumar
,
A. T.
,
Ophir
,
J.
, and
Krouskop
,
T. A.
, 2007, “
Assessing Image Quality in Effective Poisson’s Ratio Elastography and Poroelastography: I
,”
Phys. Med. Biol.
0031-9155,
52
, pp.
1303
1320
.
12.
Bellomo
,
N.
,
Li
,
N. K.
, and
Maini
,
P. K.
, 2008, “
On the Foundations of Cancer Modeling: Selected Topics, Speculations, and Perspectives
,”
Math. Models Meth. Appl. Sci.
0218-2025,
18
, pp.
593
646
.
13.
Rao
,
K. M.
, and
Cohen
,
H. J.
, 1991, “
Actin Cytoskeletal Network in Aging and Cancer
,”
Mutat Res.
0027-5107,
256
(
2–6
), pp.
139
148
.
14.
Lekka
,
M.
,
Laidler
,
P.
,
Gil
,
D.
,
Lekki
,
J.
,
Stachura
,
Z.
, and
Hrynkiewicz
,
A. Z.
, 1999, “
Elasticity of Normal and Cancerous Human Bladder Cells Studied by Scanning Force Microscopy
,”
Eur. Biophys. J.
0175-7571,
28
(
4
), pp.
312
316
.
15.
Unnikrishnan
,
G. U.
,
Unnikrishnan
,
V. U.
, and
Reddy
,
J. N.
, 2007, “
Constitutive Material Modeling of Cell: A Micromechanics Approach
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
315
323
.
16.
Alarćon
,
T.
,
Byrne
,
H. M.
, and
Maini
,
P. K.
, 2005, “
A Multiple Scale Model for Tumor Growth
,”
Multiscale Model. Simul.
1540-3459,
3
, pp.
440
475
.
17.
Jiang
,
Y.
,
Pjesivac-Grbovic
,
J.
,
Cantrell
,
C.
, and
Freyer
,
J. P.
, 2005, “
A Multiscale Model for Avascular Tumor Growth
,”
Biophys. J.
0006-3495,
89
, pp.
3884
3894
.
18.
Ribba
,
B.
,
Colin
,
T.
, and
Schnell
,
S.
, 2006, “
A Multiscale Mathematical Model of Cancer, and Its Use in Analyzing Irradiation Therapies
,”
Theoretical Biology and Medical Modelling
,
3
, pp.
1
19
.
19.
Ayati
,
B. P.
,
Webb
,
G. F.
, and
Anderson
,
A. R.
, 2006, “
Computational Methods and Results for Structured Multiscale Models of Tumor Invasion
,”
Multiscale Model. Simul.
1540-3459,
5
, pp.
1
20
.
20.
Kim
,
Y.
,
Stolarska
,
M. A.
, and
Othmer
,
H. G.
, 2007, “
A Hybrid Model for Tumor Spheroid Growth in Vitro I: Theoretical Development and Early Results
,”
Math. Models Meth. Appl. Sci.
0218-2025,
17
, pp.
1773
1798
.
21.
Byrne
,
H. M.
,
van Leeuwen
,
I. M. M.
,
Owen
,
M. R.
,
Alarcon
,
T.
, and
Maini
,
P. K.
, 2008, “
Multiscale Modeling of Solid Tumor Growth
,”
Selected Topics in Cancer Modeling. Genesis, Evolution, Immune Competition, and Therapy
,
Birkhauser
,
Boston, MA
, pp.
449
473
.
22.
Deroulers
,
C.
,
Aubert
,
M.
,
Badoual
,
M.
, and
Grammaticos
,
B.
, 2009, “
Modeling Tumor Cell Migration: From Microscopic to Macroscopic Models
,”
Phys. Rev. E
1063-651X,
79
, p.
031917
.
23.
Bellomo
,
N.
,
Angelis
,
E. D.
, and
Preziosi
,
L.
, 2003, “
Multiscale Modeling and Mathematical Problems Related to Tumor Evolution and Medical Therapy
,”
Journal of Theoretical Medicine
,
5
(
2
), pp.
111
136
.
24.
Anderson
,
A. R. A.
, 2005, “
A Hybrid Mathematical Model of Solid Tumor Invasion: The Importance of Cell Adhesion
,”
IMA J. Math. Appl. Med. Biol.
0265-0746,
22
, pp.
163
186
.
25.
Byrne
,
H.
, 1997, “
The Importance of Intercellular Adhesion in the Development of Carcinomas
,”
IMA J. Math. Appl. Med. Biol.
0265-0746,
14
, pp.
305
323
.
26.
Turner
,
S.
, and
Sherratt
,
J. A.
, 2002, “
Intercellular Adhesion and Cancer Invasion: A Discrete Simulation Using the Extended Potts Model
,”
J. Theor. Biol.
0022-5193,
216
, pp.
85
100
.
27.
Rejniak
,
K. A.
, 2005, “
A Single Cell Approach in Modeling the Dynamics of Tumor Microregions
,”
Math. Biosci. Eng.
1547-1063,
2
(
3
), pp.
643
655
.
28.
Drasdo
,
D.
, and
Hohme
,
S.
, 2005, “
A Single Cell Based Model of Tumor Growth In Vitro: Monolayers and Spheroids
,”
Phys. Biol.
1478-3975,
2
, pp.
133
147
.
29.
Schaller
,
G.
, and
Meyer-Hermann
,
M.
, 2005, “
Multicellular Tumor Spheroid in an Off-Lattice Vornoi-Delaunay Cell Model
,”
Phys. Rev. E
1063-651X,
71
, p.
051910
.
30.
Araujo
,
R. P.
, and
McElwain
,
D. L.
, 2004, “
A History of the Study of Solid Tumour Growth: The Contribution of Mathematical Modelling
,”
Bull. Math. Biol.
0092-8240,
66
(
5
), pp.
1039
1091
.
31.
Roose
,
T.
,
Chapman
,
S. J.
, and
Maini
,
P. K.
, 2007, “
Mathematical Models of Avascular Tumor Growth
,”
SIAM Rev.
0036-1445,
49
, pp.
179
208
.
32.
Lowengrub
,
J. S.
,
Frieboes
,
H. B.
,
Jin
,
F.
,
Chuang
,
Y. -L.
,
Li
,
X.
,
Macklin
,
P.
,
Wise
,
S. M.
, and
Cristini
,
V.
, 2010, “
Nonlinear Modelling of Cancer: Bridging the Gap Between Cells and Tumours
,”
Nonlinearity
0951-7715,
23
, pp.
R1
R91
.
33.
Tracqui
,
P.
, 2009, “
Biophysical Models of Tumour Growth
,”
Rep. Prog. Phys.
0034-4885,
72
, p.
056701
.
34.
Dingli
,
D.
, and
Nowak
,
M. A.
, 2006, “
Cancer Biology: Infectious Tumour Cells
,”
Nature (London)
0028-0836,
443
, pp.
35
36
.
35.
McPhee
,
S. J.
,
Lingappa
,
V. R.
, and
Ganong
,
W. F.
, 2005,
Pathophysiology of Disease: An Introduction to Clinical Medicine
,
McGraw-Hill Medical
,
New York
.
36.
Kuszyk
,
B. S.
,
Corl
,
F. M.
,
Franano
,
F. N.
,
Bluemke
,
D. A.
,
Hofmann
,
L. V.
,
Fortman
,
B. J.
, and
Fishman
,
E. K.
, 2001, “
Tumor Transport Physiology: Implications for Imaging and Imaging-Guided Therapy
,”
AJR, Am. J. Roentgenol.
0361-803X,
177
, pp.
747
753
.
37.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science
,
John Wiley & Sons
,
Chichester
.
38.
Liu
,
I. -S.
, 2002,
Continuum Mechanics
,
Springer-Verlag
,
Berlin
.
39.
Reddy
,
J. N.
, 2008,
An Introduction to Continuum Mechanics With Applications
,
Cambridge University Press
,
New York
.
40.
Skalak
,
R.
,
Zargaryan
,
S.
,
Jain
,
R. K.
,
Netti
,
P. A.
, and
Hoger
,
A.
, 1996, “
Compatibility and the Genesis of Residual Stress by Volumetric Growth
,”
J. Math. Biol.
0303-6812,
34
, pp.
889
914
.
41.
MacArthur
,
B. D.
, and
Please
,
C. P.
, 2004, “
Residual Stress Generation and Necrosis Formation in Multi-Cell Tumour Spheroids
,”
J. Math. Biol.
0303-6812,
49
, pp.
537
552
.
42.
Chaplain
,
M. A.
, and
Sleeman
,
B. D.
, 1993, “
Modelling the Growth of Solid Tumours and Incorporating a Method for Their Classification Using Nonlinear Elasticity Theory
,”
J. Math. Biol.
0303-6812,
31
(
5
), pp.
431
473
.
43.
Greenspan
,
H. P.
, 1976, “
On the Growth and Stability of Cell Cultures and Solid Tumors
,”
J. Theor. Biol.
0022-5193,
56
, pp.
229
242
.
44.
Jones
,
A. F.
,
Byrne
,
H. M.
,
Gibson
,
J. S.
, and
Dold
,
J. W.
, 2000, “
A Mathematical Model of the Stress Induced During Avascular Tumour Growth
,”
J. Math. Biol.
0303-6812,
40
(
6
), pp.
473
499
.
45.
Kyriacou
,
S. K.
, and
Davatzikos
,
C.
, 1998, “
A Biomechanical Model of Soft Tissue Deformation With Applications to Non-Rigid Registration of Brain Images With Tumor Pathology
,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI’98
, (
Lecture Notes in Computer Science
),
W.
Wells
,
A.
Colchester
, and
S.
Delp
, eds.,
Springer-Verlag
,
Berlin Heidelberg
, pp.
531
538
.
46.
Kyriacou
,
S. K.
,
Davatzikos
,
C.
,
Zinreich
,
S. J.
, and
Bryan
,
R. N.
, 1999, “
Nonlinear Elastic Registration of Brain Images With Tumor Pathology Using a Biomechanical Model
,”
IEEE Trans. Med. Imaging
0278-0062,
18
(
7
), pp.
580
592
.
47.
Azar
,
F. S.
,
Metaxas
,
D. N.
, and
Schnall
,
M. D.
, 2000, “
A Finite Element Model of the Breast for Predicting Mechanical Deformations During Biopsy Procedures
,”
Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis
, pp.
38
45
.
48.
Azar
,
F. S.
,
Metaxas
,
D. N.
, and
Schnall
,
M. D.
, 2001, “
A Deformable Finite Element Model of the Breast for Predicting Mechanical Deformations Under External Perturbations
,”
Acad. Radiol.
1076-6332,
8
(
10
), pp.
965
975
.
49.
Ambrosi
,
D.
, and
Mollica
,
F.
, 2002, “
On the Mechanics of a Growing Tumor
,”
Int. J. Eng. Sci.
0020-7225,
40
, pp.
1297
1316
.
50.
Rajagopal
,
K. R.
, 1995, “
Multiple Configurations in Continuum Mechanics
,”
Reports of the Institute for Computational and Applied Mechanics
, Vol.
6
, University of Pittsburgh.
51.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
, 1984, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
0021-9290,
17
(
5
), pp.
377
394
.
52.
Rajagopal
,
K. R.
, and
Tao
,
L.
, 1995,
Mechanics of Mixtures
,
World Scientific
,
Singapore
.
53.
Johnson
,
G.
,
Massoudi
,
M.
, and
Rajagopal
,
K. R.
, 1991, “
Flow of a Fluid-Solid Mixture Between Flat Plates
,”
Chem. Eng. Sci.
0009-2509,
46
(
7
), pp.
1713
1723
.
54.
Massoudi
,
M.
,
Rajagopal
,
K. R.
, and
Phuoc
,
T. X.
, 1999, “
On the Fully Developed Flow of a Dense Particulate Mixture in a Pipe
,”
Powder Technol.
0032-5910,
104
, pp.
258
268
.
55.
Tao
,
L.
,
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
, 2001, “
A Mixture Theory of Heat Induced Alterations in Hydration and Mechanical Properties in Soft Tissues
,”
Int. J. Eng. Sci.
0020-7225,
39
(
14
), pp.
1535
1556
.
56.
Chan
,
B.
,
Donzelli
,
P. S.
, and
Spilker
,
R. L.
, 2000, “
A Mixed-Penalty Biphasic Finite Element Formulation Incorporating Viscous Fluids and Material Interfaces
,”
Ann. Biomed. Eng.
0090-6964,
28
(
6
), pp.
589
597
.
57.
Please
,
C. P.
,
Pettet
,
G.
, and
McElwain
,
D. L.
, 1998, “
A New Approach to Modeling the Formation of Necrotic Regions in Tumours
,”
Appl. Math. Lett.
0893-9659,
11
(
3
), pp.
89
94
.
58.
Landman
,
K. A.
, and
Please
,
C. P.
, 2001, “
Tumour Dynamics and Necrosis: Surface Tension and Stability
,”
IMA J. Math. Appl. Med. Biol.
0265-0746,
18
, pp.
131
158
.
59.
Chen
,
C. Y.
,
Byrne
,
H. M.
, and
King
,
J. R.
, 2001, “
The Influence of Growth-Induced Stress From the Surrounding Medium on the Development of Multicell Spheroids
,”
J. Math. Biol.
0303-6812,
43
(
3
), pp.
191
220
.
60.
Breward
,
C. J.
,
Byrne
,
H.
, and
Lewis
,
C. E.
, 2002, “
The Role of Cell-Cell Interactions in a Two-Phase Model for Avascular Tumour Growth
,”
J. Math. Biol.
0303-6812,
45
, pp.
125
152
.
61.
Breward
,
C. J.
,
Byrne
,
H. M.
, and
Lewis
,
C. E.
, 2003, “
A Multiphase Model Describing Vascular Tumour Growth
,”
Bull. Math. Biol.
0092-8240,
65
, pp.
609
640
.
62.
Ambrosi
,
D.
, and
Preziosi
,
L.
, 2002, “
On the Closure of Mass Balance Models for Tumor Growth
,”
Math. Models Meth. Appl. Sci.
0218-2025,
12
, pp.
737
754
.
63.
Byrne
,
H. M.
, and
Preziosi
,
L.
, 2003, “
Modelling Solid Tumour Growth Using the Theory of Mixtures
,”
Mathematical Medicine and Biology
,
20
, pp.
341
366
.
64.
Lubkin
,
S. R.
, and
Jackson
,
T.
, 2002, “
Multiphase Mechanics of Capsule Formation in Tumors
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
237
243
.
65.
Khaled
,
A. R. A.
, and
Vafai
,
K.
, 2003, “
The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4989
5003
.
66.
Baxter
,
L. T.
, and
Jain
,
R. K.
, 1989, “
Transport of Fluid and Macromolecules in Tumors. I. Role of Interstitial Pressure and Convection
,”
Microvasc. Res.
0026-2862,
37
, pp.
77
104
.
67.
Jain
,
R. K.
, and
Baxter
,
L. T.
, 1988, “
Mechanisms of Heterogeneous Distribution of Monoclonal Antibodies and Other Macromolecules in Tumors: Significance of Elevated Interstitial Pressure
,”
Cancer Res.
0008-5472,
48
, pp.
7022
7032
.
68.
Netti
,
P. A.
,
Baxter
,
L. T.
,
Boucher
,
Y.
,
Skalak
,
R.
, and
Jain
,
R. K.
, 1995, “
Time Dependent Behavior of Interstitial Fluid Pressure in Solid Tumors: Implications for Drug Delivery
,”
Cancer Res.
0008-5472,
55
(
22
), pp.
5451
5458
.
69.
Netti
,
P. A.
,
Baxter
,
L. T.
,
Boucher
,
Y.
,
Skalak
,
R.
, and
Jain
,
R. K.
, 1997, “
Macro-and Microscopic Fluid Transport in Living Tissues: Application to Solid Tumors
,”
AIChE J.
0001-1541,
43
, pp.
818
834
.
70.
Milosevic
,
M. F.
,
Fyles
,
A. W.
, and
Hill
,
R. P.
, 1999, “
The Relationship Between Elevated Interstitial Fluid Pressure and Blood Flow in Tumors: A Bioengineering Analysis
,”
Int. J. Radiat. Oncol., Biol., Phys.
0360-3016,
43
, pp.
1111
1123
.
71.
Pozrikidis
,
C.
, and
Farrow
,
D. A.
, 2003, “
A Model of Fluid Flow in Solid Tumors
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
181
194
.
72.
Pozrikidis
,
C.
, 2010, “
Numerical Simulation of Blood and Interstitial Flow Through a Solid Tumor
,”
J. Math. Biol.
0303-6812,
60
, pp.
75
94
.
73.
Roose
,
T.
,
Netti
,
P. A.
,
Munn
,
L. L.
,
Boucher
,
Y.
, and
Jain
,
R. K.
, 2003, “
Solid Stress Generated by Spheroid Growth Estimated Using a Linear Poroelasticity Model
,”
Microvasc. Res.
0026-2862,
66
, pp.
204
212
.
74.
McGuire
,
S.
,
Zaharoff
,
D.
, and
Yuan
,
F.
, 2006, “
Nonlinear Dependence of Hydraulic Conductivity on Tissue Deformation During Intratumoral Infusion
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
1173
1181
.
75.
Baish
,
J. W.
,
Netti
,
P. A.
, and
Jain
,
R. K.
, 1997, “
Transmural Coupling of Fluid Flow in Microcirculatory Network and Interstitium in Tumors
,”
Microvasc. Res.
0026-2862,
53
(
2
), pp.
128
141
.
76.
Pusenjak
,
J.
, and
Miklavcic
,
D.
, 2000, “
Modeling of Interstitial Fluid Pressure in Solid Tumor
,”
Simulation Practice and Theory
,
8
, pp.
17
24
.
77.
Mollica
,
F.
,
Jain
,
R. K.
, and
Netti
,
P. A.
, 2003, “
A Model for Temporal Heterogeneities of Tumor Blood Flow
,”
Microvasc. Res.
0026-2862,
65
, pp.
56
60
.
78.
Chapman
,
S. J.
,
Shipley
,
R. J.
, and
Jawad
,
R.
, 2008, “
Multiscale Modeling of Fluid Transport in Tumors
,”
Bull. Math. Biol.
0092-8240,
70
, pp.
2334
2357
.
79.
Wu
,
J.
,
Xu
,
S.
,
Long
,
Q.
,
Collins
,
M. W.
,
Konig
,
C. S.
,
Zhao
,
G.
,
Jiang
,
Y.
, and
Padhani
,
A. R.
, 2008, “
Coupled Modeling of Blood Perfusion in Intravascular, Interstitial Spaces in Tumor Microvasculature
,”
J. Biomech.
0021-9290,
41
, pp.
996
1004
.
80.
Zhao
,
J.
,
Salmon
,
H.
, and
Sarntinoranont
,
M.
, 2007, “
Effect of Heterogeneous Vasculature on Interstitial Transport Within a Solid Tumor
,”
Microvasc. Res.
0026-2862,
73
, pp.
224
236
.
81.
Whyne
,
C. M.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
, 2001, “
Parametric Finite Element Analysis of Vertebral Bodies Affected by Tumors
,”
J. Biomech.
0021-9290,
34
, pp.
1317
1324
.
82.
Whyne
,
C. M.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
, 2003, “
Burst Fracture in the Metastatically Involved Spine: Development, Validation, and Parametric Analysis of a Three-Dimensional Poroelastic Finite-Element Model
,”
Spine
0362-2436,
28
(
7
), pp.
652
660
.
83.
O’Reilly
,
M. A.
, and
Whyne
,
C. M.
, 2008, “
Comparison of Computed Tomography Based Parametric and Patient-Specific Finite Element Models of the Healthy and Metastatic Spine Using a Mesh-Morphing Algorithm
,”
Spine
0362-2436,
33
, pp.
1876
1881
.
84.
McKnight
,
A. L.
,
Kugel
,
J. L.
,
Rossman
,
P. J.
,
Manduca
,
A.
,
Hartmann
,
L. C.
, and
Ehman
,
R. L.
, 2002, “
MR Elastography of Breast Cancer: Preliminary Results
,”
AJR, Am. J. Roentgenol.
0361-803X,
178
, pp.
1411
1417
.
85.
Venkatesh
,
S. K.
,
Yin
,
M.
,
Glockner
,
J. F.
,
Takahashi
,
N.
,
Araoz
,
P. A.
,
Talwalkar
,
J. A.
, and
Ehman
,
R. L.
, 2008, “
MR Elastography of Liver Tumors: Preliminary Results
,”
AJR, Am. J. Roentgenol.
0361-803X,
190
, pp.
1534
1540
.
86.
Hoyt
,
K.
,
Castaneda
,
B.
,
Zhang
,
M.
,
Nigwekar
,
P.
,
di Sant’agnese
,
P. A.
,
Joseph
,
J. V.
,
Strang
,
J.
,
Rubens
,
D. J.
, and
Parker
,
K. J.
, 2008, “
Tissue Elasticity Properties as Biomarkers for Prostate Cancer
,”
Cancer Biomark.
,
4
, pp.
213
225
.
87.
Coussot
,
C.
,
Kalyanam
,
S.
,
Yapp
,
R.
, and
Insana
,
M. F.
, 2009, “
Fractional Derivative Models for Ultrasonic Characterization of Polymer and Breast Tissue Viscoelasticity
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
56
, pp.
715
726
.
88.
Insana
,
M. F.
,
Pellot-Barakat
,
C.
,
Sridhar
,
M.
, and
Lindfors
,
K. K.
, 2004, “
Viscoelastic Imaging of Breast Tumor Microenvironment With Ultrasound
,”
J. Mammary Gland Biology and Neoplasia
,
9
(
4
), pp.
393
404
.
89.
Qiu
,
Y.
,
Sridhar
,
M.
,
Tsou
,
J. K.
,
Lindfors
,
K. K.
, and
Insana
,
M. F.
, 2008, “
Ultrasonic Viscoelasticity Imaging of Nonpalpable Breast Tumors: Preliminary Results
,”
Acad. Radiol.
1076-6332,
15
(
12
), pp.
1526
1533
.
90.
Sinkus
,
R.
,
Tanter
,
M.
,
Xydeas
,
T.
,
Catheline
,
S.
,
Bercoff
,
J.
, and
Fink
,
M.
, 2005, “
Viscoelastic Shear Properties of in Vivo Breast Lesions Measured by MR Elastography
,”
Magn. Reson. Imaging
0730-725X,
23
, pp.
159
165
.
91.
O’Hagan
,
J. J.
, and
Samani
,
A.
, 2008, “
Measurement of the Hyperelastic Properties of Tissue Slices With Tumor Inclusion
,”
Phys. Med. Biol.
0031-9155,
53
, pp.
7087
7106
.
92.
O’Hagan
,
J. J.
, and
Samani
,
A.
, 2009, “
Measurement of the Hyperelastic Properties of 44 Pathological Ex Vivo Breast Tissue Samples
,”
Phys. Med. Biol.
0031-9155,
54
, pp.
2557
2569
.
93.
Samani
,
A.
,
Zubovits
,
J.
, and
Plewes
,
D.
, 2007, “
Elastic Moduli of Normal and Pathological Human Breast Tissues: An Inversion-Technique-Based Investigation of 169 Samples
,”
Phys. Med. Biol.
0031-9155,
52
, pp.
1565
1576
.
94.
Wellman
,
P. S.
,
Howe
,
R. D.
,
Dalton
,
E.
, and
Kern
,
K. A.
, 1999, “
Breast Tissue Stiffness in Compression is Correlated to Histological Diagnosis
,” Harvard BioRobotics Laboratory Technical Report, http://biorobotics.harvard.edu/pubs.htmlhttp://biorobotics.harvard.edu/pubs.html.
95.
Mazza
,
E.
,
Nava
,
A.
,
Hahnloser
,
D.
,
Jochum
,
W.
, and
Bajka
,
M.
, 2007, “
The Mechanical Response of Human Liver and Its Relation to Histology: An In Vivo Study
,”
Med. Image Anal.
1361-8415,
11
, pp.
663
672
.
96.
Sarvazyan
,
A. P.
,
Skovoroda
,
A. R.
,
Emelianov
,
S. Y.
,
Fowlkes
,
J. B.
,
Pipe
,
J. G.
,
Adler
,
R. S.
,
Buxton
,
R. B.
, and
Carson
,
P. L.
, 1995, “
Biophysical Bases of Elasticity Imaging
,”
Acoustical Imaging
,
J. P.
Jones
, ed.,
Plenum Press
,
New York
, pp.
223
240
.
You do not currently have access to this content.