This paper examines the current state of gyrostabilizer vehicular technology. With no previous description of the wide range and variety of gyrostabilizer technology, this paper provides a review of the current state of the art. This includes a detailed examination of gyrostabilizer vehicular systems, dynamics and control. The present review first describes the historical development of gyroscopic systems before going on to describe the various system characteristics, including an overview of gyrostabilizer vehicular applications and system designs for land, sea and spacecraft. The equations of motion for generic gyroscopic systems are derived following momentum (Newton-Euler) and energy (Lagrange) based approaches and examples provided. The derivations are made generically for individual components, enabling direct application for a wide variety of systems. In the final section, a review of gyrostabilizer control strategies is presented and the remaining challenges are discussed. Gyrostabilizer systems are anticipated to become more widely adopted as they provide an effective means of motion control with several significant advantages for land, sea and spacecraft. (101 references).

References

1.
Kurokawa
,
H.
, 1998, “
A Geometric Study of Single Gimbal Control Moment Gyros Singularity Problems and Steering Law
,”
Report of Mechanical Engineering Laboratory: Report of results of projects conducted at the Mechanical Engineering Laboratory, Agency of Industrial Technology and Science
,
Ministry of International Trade and Industry
,
Japan
.
2.
Krebs
,
D.
, 1998, “
Model Correlation of International Space Station Control Moment Gyroscope
,”
Proceedings of the 1998 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit and AIAA/ASME/AHS Adaptive Structures Forum
. Part 1 (of 4),
1
, pp.
813
818
.
3.
Woolsey
,
C.
, and
Leonard
,
N.
, 2002, “
Stabilizing Underwater Vehicle Motion Using Internal Rotors
,”
Automatica
,
38
(
12
), pp.
2053
2062
.
4.
Thornton
,
B.
,
Ura
,
T.
,
Nose
,
Y.
, and
Turnock
,
S.
, 2007, “
Zero-g Class Underwater Robots: Unrestricted Attitude Control Using Control Moment Gyros
,”
IEEE J. Ocean. Eng.
,
32
(
3
), pp.
565
583
.
5.
Beznos
,
A.
,
Formal’sky
,
A.
,
Gurfinkel
,
E.
,
Jicharev
,
D.
,
Lensky
,
A.
,
Savitsky
,
K.
, and
Tchesalin
,
L.
, 1998, “
Control of Autonomous Motion of Two-Wheel Bicycle With Gyroscopic Stabilization
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
3
, pp.
2670
2675
.
6.
Schilovski
,
P.
, 1909, “
Gyrocar
,”
Patent No. GB
12
,
021
.
7.
Schilovski
,
P.
, 1914, “
Gyrocar
,”
Patent No. GB
12
,
940
.
8.
Tomlinson
,
N.
, 1980,
Louis Brennan Inventor Extraordinaire
,
John Halliwell
,
Chatham
.
9.
Higashiyama
,
H.
,
Yamada
,
M.
,
Kazao
,
Y.
, and
Namiki
,
M.
, 1998, “
Characteristics of Active Vibration Control System Using Gyro-Stabilizer
,”
Eng. Struct.
,
20
(
3
), pp.
176
183
.
10.
Brown
,
H.
, and
Xu
,
Y.
, 1996, “
Single-Wheel, Gyroscopically Stabilized Robot
,”
IEEE J. Rob. Autom.
,
4
, pp.
3658
3663
.
11.
Zhu
,
Z.
,
Al-Mamun
,
A.
,
Vadakkepat
,
P.
, and
Lee
,
T.
, 2006, “
Line Tracking of the Gyrobot a Gyroscopically Stabilized Single-Wheeled Robot
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO 2006)
, pp.
293
298
.
12.
Peck
,
M.
,
Paluszek
,
M.
,
Thomas
,
S.
, and
Mueller
,
J.
, 2005, “
Control-Moment Gyroscopes for Joint Actuation: A New Paradigm in Space Robotics
,”
1st Space Exploration Conference: Continuing the Voyage of Discovery
,
American Institute of Aeronautics and Astronautics Inc.
,
Orlando, FL
,
1
, pp.
204
233
.
13.
Lewis
,
E.
, 1989,
Principles of Naval Architecture
,
The Society of Naval Architects and Marine Engineers
,
New York
.
14.
Perez
,
T.
, and
Steinmann
,
P.
, 2008, “
Advances in Gyrostabilisation of Vessel Roll Motion
,”
Proceedings of Pacific International Maritime Conference 2008
,
Sydney, NSW
(2008).
15.
Sperry
,
E.
, 1910, “
The Gyroscope for Marine Purposes
,”
Soc. Nav. Archit. Mar. Eng., Trans.
,
18
, pp.
143
154
.
16.
Schlick
,
E.
, 1904, “
The Gyroscopic Effect of Flywheels on Board Ship,”
Transactions of the Institute of Naval Architects
,
23
, pp.
117
134
.
17.
Wagner
,
J.
, 2005, “
From Bohnenberger’s Machine to Integrated Navigation Systems, 200 Years of Inertial Navigation
,”
Photogrammetric Week
,
Wichmann Verlag
,
Heidelberg
.
18.
Trainer
,
M.
, 2008, “
Albert Einsteins Expert Opinions on the Sperry vs. Anschtz Gyrocompass Patent Dispute
,”
World Patent Information
,
30
, pp.
320
325
.
19.
Schlick
,
E.
, 1904, “
Device for Minimising the Oscillatory Movements of Ships
,” U.S. Patent No. 769,493.
20.
Brennan
,
L.
, 1903, “
Improvements in and Relating to the Imparting of Stability to Otherwise Unstable Bodies, Structures or Vehicles
,” GB Patent No. 27,212.
21.
Perez
,
T.
, and
Steinmann
,
P.
, 2009, “
Analysis of Ship Roll Gyrostabiliser Control
,”
8th IFAC International Conference on Manoeuvring and Control of Marine
,
Craft, Guaruj (SP)
,
Brazil
.
22.
Sperry
,
E.
, 1908, “
Steadying Device for Vehicles
,” U.S. Patent No. 907,907.
23.
Nicol
,
G.
, 1909,
Ship Construction and Calculations
,
James Brown and Son
,
Glasgow
.
24.
Swan Hunter and Wigham Richardson Ltd.
, 1908, “
The Schlick Gyroscope
,”
Shipbuilders Public Relations and Marketing Publications
,
Newcastle Upon Tyne
.
25.
Hughes
,
T.
, 1971,
Elmer Sperry Inventor and Engineer
,
Johns Hopkins Press
,
Baltimore, MD
.
26.
Cousins
,
H.
, 1913, “
The Stability of Gyroscopic Single Track Vehicles
,”
Engineering
,
2
, pp.
678
681
.
27.
Cousins
,
H.
, 1913, “
The Stability of Gyroscopic Single Track Vehicles
,”
Engineering
,
2
, pp.
711
712
.
28.
Cousins
,
H.
, 1913, “
The Stability of Gyroscopic Single Track Vehicles
,”
Engineering
,
2
, pp.
781
784
.
29.
Spry
,
S.
, and
Girard
,
A.
, 2008, “
Gyroscopic Stabilization of Unstable Vehicles: Configurations, Dynamics, and Control
,”
Veh. Syst. Dyn.
,
46
(
1
), pp.
247
260
.
30.
Museum of Retro Technology, 2010, “
Gyrocars
,” http://www.dself.dsl.pipex.comhttp://www.dself.dsl.pipex.com.
31.
Haagenson
,
B.
, 1913, “
Ice Breaking Marine Vehicle
,” U.S. Patent No. 1,071,735.
32.
Hofmann-Wellenhof
,
B.
,
Legat
,
K.
:
Wieser
,
M.
, 2003,
Navigation: Principles of Positioning and Guidance
,
Springer-Verlag Wien
.
33.
Brennan
,
L.
, 1916, “
Means for Impacting Stability to Unstable Bodies
,” U.S. Patent No. 1,183,530.
34.
Holmes
,
G.
, 2010, “
Gyroscope: How Products are Made
,” http://www.Encyclopedia.comhttp://www.Encyclopedia.com.
35.
Norden
,
C.
, 1917, “
Gyroscope Stabiliser
,” U.S. Patent No. 1,236,204.
36.
Ahamad
,
H.
, 2009, “
Physics of Motion
,” http://www.scribd.com/Ahmd2k9http://www.scribd.com/Ahmd2k9.
37.
Thompson
,
H.
, 1925, “
Controlling and Breaking Device for Ships Gyroscopes
,” U.S. Patent No. 1,558,720.
38.
Gretsch
,
R.
, 1926, “
Vehicle Stabiliser
,” U.S. Patent No. 1,571,264.
39.
Burger
,
W.
, and
Corbet
,
A.
, 1966,
Ship Stabilizers
,
Pergamon
,
New York
.
40.
Gillmer
,
T.
, 1984,
Modern Ship Design
,
United States Naval Institute
,
Annapolis, MD
.
41.
Duffy
,
R.
, 1994,
Charles Stark Draper (1901 to 1987) A Biographical Memoir
,
National Academy of Sciences-National Research Council
,
Washington DC
.
42.
Lawrence
,
A.
, 1998,
Modern Inertial Technology: Navigation, Guidance, and Control
, 2nd ed.
Springer- Verlag
,
New York
.
43.
Haviland
,
R.
, 1958, “
Orientation Control for a Space Vehicle
,”
U.S. Patent
2
,
856
,
142
.
44.
Roes
,
J.
, 1961, “
An Electro-Mechanical Storage System for Space Application
,”
Progress in Astronautics and Rocketry
,
3
, pp.
613
622
.
45.
Yarber
,
G.
, 1969, “
Stabilisation Control System
,” U.S. Patent No. 3,471,105.
46.
Fersht
,
S.
, 1971, “
Gyroscopic Stabiliser Having an Adjustable Spring
,” U.S. Patent No. 3,576,143.
47.
Will
,
R.
,
Claude
,
R.
,
Kekler
,
R.
, and
Jacobs
,
K.
, 1974, “
Description and Simulation of an Integrated Power and Attitude Control System Concept for Space-Vehicle Applications
,” Paper No. NASA TN D-7459, 80.
48.
Kanki
,
H.
,
Nekomoto
,
Y.
,
Monobe
,
H.
, and
Ogura
,
H.
, 1994, “
Development of CMG Active Vibration Control Device for Gondola,” JSME Int. J
.,
Ser. C
,
37
(
3
), pp.
468
470
.
49.
Mitsubishi Heavy Industries (MHI) and Ferretti Group, 2010, “
Anti Rolling Gyro
,” http://www.ferretti-yachts.comhttp://www.ferretti-yachts.com.
50.
Rosmann
,
D.
,
Smay
,
J.
, and
Rosen
,
H.
, 1997, “
Spacecraft Control with Skewed Control Moment Gyros
,” U.S. Patent No. 5,681,012.
51.
Woolsey
,
C.
and
Leonard
,
N.
, 1999, “
Underwater Vehicle Stabilization by Internal Rotors
,”
Proceedings of the American Control Conference
,
5
, pp.
3417
3421
.
52.
Curtin University of Technology, 2010, “
R and D Now, The Magazine of Curtins Office of Research and Development, November 2004
,” http://research.curtin.edu.au/about/rdnow.cfmhttp://research.curtin.edu.au/about/rdnow.cfm.
53.
Thornton
,
B.
,
Ura
,
T.
,
Nose
,
Y.
, and
Turnock
,
S.
, 2005, “
Internal aActuation of Underwater Robots Using Control Moment Gyros
,”
(IEEE) Oceans Conference
,
1
, pp.
591
598
.
54.
Kanki
,
H.
, 2006, “
Gyro Wave Activated Power Generator and a Wave Suppressor Using the Power Generation
,” U.S. Patent No. 7,003,947 B2.
55.
Kanki
,
H.
,
Morimoto
,
T.
,
Kawanishi
,
M.
,
Onishi
,
T.
, and
Hata
,
T.
, 2005, “
Study on Dynamics of Floating Wave-Power Generating System Using Gyro Moment
,”
The Japan Society of Mechanical Engineers
,
80
, pp.
6.57
6.58
.
56.
Akers
,
R.
, 2007, “
Gyrostabiliser for Small Boats
,” U.S. Patent No. 7,240,630 B2.
57.
Thornton
,
B.
,
Ura
,
T.
, and
Nose
,
Y.
, 2007, “
Wind-up AUVs: Combined Energy Storage and Attitude Control Using Control Moment Gyros
,”
(IEEE) Oceans Conference
.
58.
Townsend
,
N.
,
Murphy
,
A.
, and
Shenoi
,
R.
, 2007, “
A New Active Gyrostabiliser System for Ride Control of Marine Vehicles
,”
Ocean Eng.
,
34
(
11
), pp.
1607
1617
.
59.
Draper
,
P.
, 2008, “
Roll on, Roll off
,”
European Boatbuilder
, March ed., pp.
16
19
.
60.
Ship Dynamics Pty Ltd, 2010, “
General Product Brochure: Active Gyroscopic Roll-Stabiliser
,” http://www.shipdynamics.com/gyroscopicstabiliser.aspxhttp://www.shipdynamics.com/gyroscopicstabiliser.aspx.
61.
Gagne
,
J.
,
Laroche
,
E.
,
Piccin
,
O.
, and
Gangloff
,
J.
, 2009, “
An Active Cardiac Stabilizer Based on Gyroscopic Effect
,”
31st Annual International Conference of the IEEE EMBS
, pp.
6769
72
.
62.
Ford
,
K.
, and
Hall
,
C.
, 2000, “
Singular Direction Avoidance Steering for Control-Moment Gyros
,”
J. Guid. Control Dyn.
,
23
(
4
), pp.
648
656
.
63.
Richie
,
D.
,
Tsiotras
,
P.
, and
Fausz
,
J.
, 2001, “
Simultaneous Attitude Control and Energy Storage Using VSCMGs: Theory and Simulation
,”
Proceedings of the American Control Conference
,
5
, pp.
3973
3979
.
64.
Xie
,
R.
,
Yao
,
Y.
,
He
,
F.
, and
Ma
,
K.
, 2008, “
Simultaneous Attitude Stabilization and Power Tracking for a Spacecraft with Two VSCMGs
,”
Proceedings of the IEEE International Conference on Control Applications
, pp.
1121
1126
.
65.
Altay
,
A.
, and
Tekinalp
,
O.
, 2005, “
Spacecraft Energy Storage and Attitude Control
,”
Proceedings of 2nd International Conference on Recent Advances in Space Technologies
,
RAST
, pp.
201
206
.
66.
Karnopp
,
D.
, 2002, “
Tilt Control for Gyro-Stabilized Two-Wheeled Vehicles
,”
Veh. Syst. Dyn.
,
37
(
2
), pp.
145
156
.
67.
Aubrun
,
J.
, and
Margulies
,
G.
, 1979, “
Gyrodampers for Large Scale Space Structures,” NASA Contract Rep. NASA CR 159
, p.
171
.
68.
McMahon
,
J.
, and
Schaub
,
H.
, 2009, “
Simplified Singularity Avoidance Using Variable-Speed Control Moment Gyroscope Null Motion
,”
J. Guid. Control. Dyn.
32
(
6
), pp.
1938
1943
.
69.
Museum of Retro Technology, 2011, “
The Brennan Gyro-Monorail
,” http://www.aqpl43.dsl.pipex.comhttp://www.aqpl43.dsl.pipex.com.
70.
Carnegie Mellon University, School of Computer Science, Robotics Institute, “Gyrover,” 2011. http://www.ri.cmu.edu/research_project_detail.htmlhttp://www.ri.cmu.edu/research_project_detail.html.
71.
Hwang
,
C.
,
Wu
,
H.
, and
Shih
,
C.
, 2011, “
An Autonomous Dynamic Balance of an Electrical Bicycle in Motion Using Variable Structure Under-Actuated Control
,”
Asian Journal of Control
,
13
(
2
), pp.
1
15
.
72.
Au
,
K.
,
Yangsheng
,
X.
, and
Yu
,
W.
, 2001, “
Control of Tilt-up Motion of a Single Wheel Robot via Model-Based and Human-Based Controllers
,”
Mechatronics
,
11
(
4
), pp.
451
473
.
73.
Xu
,
Y.
, and
Au
,
S.
, 2004, “
Stabilization and Path Following of a Single Wheel Robot
,”
IEEE/ASME Trans. Mechatron.
,
9
(
2
), pp.
407
419
.
74.
Tsai
,
S.
,
Ferreira
,
E.
, and
Paredis
,
C.
, 1999, “
Control of the Gyrover. A Single-Wheel Gyroscopically Stabilized Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, IROS’99,
1
, pp.
179
184
.
75.
Thornton
,
B.
,
Ura
,
T.
, and
Nose
,
Y.
, 2008, “
Combined Energy Storage and Three-Axis Attitude Control of a Gyroscopically Actuated Auv
,”
(IEEE) Oceans Conference
.
76.
Bracco
,
G.
,
Giorcelli
,
E.
,
Mattiazzo
,
G.
,
Pastorelli
,
M.
, and
Taylor
,
J.
, 2009, “
Iswec: Design of a Prototype Model with Gyroscope
,”
International Conference on Clean Electrical Power
, pp.
57
63
.
77.
Bracco
,
G.
,
Giorcelli
,
E.
,
Marignetti
,
F.
, and
Mattiazzo
,
G.
, 2010, “
Iswec: Application of Linear Tubular Generators,” IEEE International Symposium on Industrial Electronics
, pp.
2426
2430
.
78.
Crabtree
,
H.
, 1909,
Spinning Tops and Gyroscopic Motion, Longmans
,
Green and Co.
,
London
.
79.
Glassman
,
D.
, 1931, “
Italian Liner to Defy the Waves
,”
Popular Mechanics
,
55
(
4
), pp.
626
631
.
80.
Knauth
,
S.
, 2009, “
On a Roll
,”
Dockwalk Magazine
, September ed., pp.
75
76
.
81.
Huang
,
X.
,
Wang
,
Q.
, and
Dong
,
C.
, 2009, “
Neural Network Adaptive Robust Attitude Control of Spacecraft
,”
IEEE International Conference on Intelligent Computing and Intelligent Systems
,
2
, pp.
747
751
.
83.
Gurrisi
,
C.
,
Seidel
,
R.
,
Dickerson
,
S.
,
Didziulis
,
S.
,
Frantz
,
P.
, and
Ferguson
,
K.
, 2010, “
Space Station Control Moment Gyroscope Lessons Learned
,”
Proceedings of the 40th Aerospace Mechanisms Symposium
, NASA/CP-2010-216272, pp.
161
176
.
84.
Shimizu
,
Y.
, and
Shimada
,
A.
, 2010, “
Direct Tilt Angle Control on Inverted Pendulum Mobile Robots
,”
AMC (2010) - The 11th IEEE International Workshop on Advanced Motion Control
, pp.
234
239
.
85.
Tekinalp
,
O.
,
Elmas
,
T.
, and
Yavrucuk
,
I.
, 2009, “
Gimbal Angle Restricted Control Moment Gyroscope Clusters
,”
Proceedings of 4th International Conference on Recent Advances in Space Technologies (RAST 2009)
, pp.
585
590
.
86.
Sun
,
Z.
,
Zhang
,
L.
,
Jin
,
G.
, and
Yang
,
X.
, 2010, “
Analysis of Inertia Dyadic Uncertainty for Small Agile Satellite with Control Moment Gyros
,”
IEEE International Conference on Mechatronics and Automation
,
ICMA
, pp.
813
818
.
87.
Lee
,
S.
, and
Rhee
,
S.
, 2007, “
Experiments of Singularity Avoidance Steering Control Laws for Redundant Single-Gimbal Control Moment Gyros
,”
International Conference on Control, Automation and Systems
, pp.
175
178
.
88.
Muszyánski
,
R.
, 2002, “
A Solution to the Singular Inverse Kinematic Problem for a Manipulation Robot Mounted on a Track
,”
Control Eng. Pract.
,
10
, pp.
35
43
.
89.
Fang
,
Y.
, and
Tsai
,
L.
, 2003, “
Feasible Motion Solutions for Serial Manipulators at Singular Configurations
,”
J. Mech. Des.
,
125
(
1
), pp.
61
69
.
90.
Buss
,
S.
, 2009, “
Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares Methods
,” http://www.math.ucsd.edu/∼sbusshttp://www.math.ucsd.edu/∼sbuss.
91.
Ŝoch
,
M.
, and
Lórencz
,
R.
, 2005, “
Solving Inverse Kinematics a New Approach to the Extended Jacobian Technique
,”
Acta Polytechnica
,
45
(
2
), pp.
21
26
.
92.
Yoon
,
H.
, and
Tsiotras
,
P.
, 2004, “
Singularity Analysis and Avoidance of Variable-Speed Control Moment Gyros Part I: No Power Constraint Case
,”
Collection of Technical Papers AIAA/AAS Astrodynamics Specialist Conference
,
2
, pp.
942
954
.
93.
Jung
,
D.
, and
Tsiotras
,
P.
, 2004, “
An Experimental Comparison of CMG Steering Control Laws
,”
Collection of Technical Papers - AIAA/AAS Astrodynamics Specialist Conference
,
2
, pp.
1128
1144
.
94.
Busseuil
,
J.
,
Llibre
,
M.
, and
Roser
,
X.
, 1998, “
High Precision Mini-CMGs and Their Spacecraft Application
,”
Advances in the Astronautical Sciences
,
98
, pp.
91
107
.
95.
Legostaev
,
V.
, 2005, “
Russian Space Programs: Achievements and Prospects of Automatic Control Applications
,”
Annu. Rev. Control
,
29
, pp.
1
11
.
96.
Oetomo
,
D.
, and
Ang
, Jr.,
M.
, 2009, “
Singularity Robust Algorithm in Serial Manipulators
,”
Rob. Comput.-Integr. Manufact.
,
25
(
1
), pp.
122
134
.
97.
Kieffer
,
J.
, 1994, “
Differential Analysis of Bifurcations and Isolated Singularities for Robots and Mechanisms
IEEE Trans. Rob. Autom.
,
10
(
1
), pp.
1
10
.
98.
Tchoán
,
K.
, and
Jakubiak
,
J.
, 2006, “
Extended Jacobian Inverse Kinematics Alogorithm for Nonholonomic Mobile Robots
,”
Int. J. Control
,
79
(
8
), pp.
895
909
.
99.
Hauser
,
J.
,
Sastry
,
S.
, and
Kokotoviác
,
P.
, 1992. “
Nonlinear Control via Approximate Input-Output Linearization: The Ball and Beam Example
,”
IEEE Trans. Autom. Control
,
31
(
3
).
100.
Tomlin
,
C.
, and
Sastry
,
S.
, 1998, “
Switching Through Singularities
,”
Syst. Control Lett.
,
35
, pp.
145
154
.
101.
Tan
,
J.
,
Xi
,
N.
, and
Wang
,
Y.
, 2004, “
A Singularity- Free Motion Control Algorithm for Robot Manipulators - A Hybrid System Approach
,”
Automatica
,
40
, pp.
1239
1245
.
You do not currently have access to this content.