Patient-specific cardiovascular simulations can provide clinicians with predictive tools, fill current gaps in clinical imaging capabilities, and contribute to the fundamental understanding of disease progression. However, clinically relevant simulations must provide not only local hemodynamics, but also global physiologic response. This necessitates a dynamic coupling between the Navier–Stokes solver and reduced-order models of circulatory physiology, resulting in numerical stability and efficiency challenges. In this review, we discuss approaches to handling the coupled systems that arise from cardiovascular simulations, including recent algorithms that enable efficient large-scale simulations of the vascular system. We maintain particular focus on multiscale modeling algorithms for finite element simulations. Because these algorithms give rise to an ill-conditioned system of equations dominated by the coupled boundaries, we also discuss recent methods for solving the linear system of equations arising from these systems. We then review applications that illustrate the potential impact of these tools for clinical decision support in adult and pediatric cardiology. Finally, we offer an outlook on future directions in the field for both modeling and clinical application.

References

1.
Marsden
,
A. L.
,
Bernstein
,
A. J.
,
Reddy
,
V. M.
,
Shadden
,
S.
,
Spilker
,
R. L.
,
Chan
,
F. P.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
,
2009
, “
Evaluation of a Novel Y-Shaped Extracardiac Fontan Baffle Using Computational Fluid Dynamics
,”
J. Thorac. Cardiovasc. Surg.
,
137
(
2
), pp.
394
403
.10.1016/j.jtcvs.2008.06.043
2.
Leval
,
M. D.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Jalali
,
H.
,
Camporini
,
G.
,
Redington
,
A.
, and
Pietrabissa
,
R.
,
1996
, “
Use of Computational Fluid Dynamics in the Design of Surgical Procedures: Application to the Study of Competitive Flows in Cavopulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
,
111
(
3
), pp.
502
513
.10.1016/S0022-5223(96)70302-1
3.
Bove
,
E.
,
Migliavacca
,
F.
,
de Leval
,
M.
,
Balossino
,
R.
,
Pennati
,
G.
,
Lloyd
,
T.
,
Khambadkone
,
S.
,
Hsia
,
T.
, and
Dubini
,
G.
,
2008
, “
Use of Mathematic Modeling to Compare and Predict Hemodynamic Effects of the Modified Blalock–Taussig and Right Ventricle–Pulmonary Artery Shunts for Hypoplastic Left Heart Syndrome
,”
J. Thorac. Cardiovasc. Surg.
,
136
(
2
), pp.
312
320
.10.1016/j.jtcvs.2007.04.078
4.
Dasi
,
L.
,
Pekkan
,
K.
,
Katajima
,
H.
, and
Yoganathan
,
A.
,
2008
, “
Functional Analysis of Fontan Energy Dissipation
,”
J. Biomech.
,
41
(
10
), pp.
2246
2252
.10.1016/j.jbiomech.2008.04.011
5.
de Leval
,
M. R.
,
Kilner
,
P.
,
Gewillig
,
M.
, and
Bull
,
C.
,
1988
, “
Total Cavopulmonary Connection: A Logical Alternative to Atriopulmonary Connection for Complex Fontan Operations. Experimental Studies and Early Clinical Experience
,”
J. Thorac. Cardiovasc. Surg.
,
96
(
5
), pp.
682
695
.
6.
Lagana
,
K.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Pietrabissa
,
R.
,
Pennati
,
G.
,
Veneziani
,
A.
, and
Quarteroni
,
A.
,
2002
, “
Multiscale Modelling as a Tool to Prescribe Realistic Boundary Conditions for the Study of Surgical Procedures
,”
Biorheology
,
39
(
3–4
), pp.
359
364
.
7.
Nakazato
,
R.
,
Park
,
H.-B.
,
Berman
,
D. S.
,
Gransar
,
H.
,
Koo
,
B.-K.
,
Erglis
,
A.
,
Lin
,
F. Y.
,
Dunning
,
A. M.
,
Budoff
,
M. J.
,
Malpeso
,
J.
,
Leipsic
,
J.
, and
Min
,
J. K.
,
2012
, “
Fractional Flow Reserved Derived From Computed Tomographic Angiography (FFRCT) for Intermediate Severity Coronary Lesions: Results From the DeFACTO Trial (Determination of Fractional Flow Reserve by Anatomic Computed Tomographic Angiography)
,”
J. Am. Coll. Cardiol.
,
60
(
17
), p.
B6
10.1016/j.jacc.2012.08.025.
8.
Sankaran
,
S.
,
Moghadam
,
M.
,
Kahn
,
A.
,
Tseng
,
E.
,
Guccione
,
J.
, and
Marsden
,
A.
,
2012
, “
Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2228
2242
.10.1007/s10439-012-0579-3
9.
Sengupta
,
D.
,
Kahn
,
A.
,
Burns
,
J.
,
Sankaran
,
S.
,
Shadden
,
S.
, and
Marsden
,
A.
,
2012
, “
Image-Based Modeling of Hemodynamics and Coronary Artery Aneurysms Caused by Kawasaki Disease
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
915
932
.10.1007/s10237-011-0361-8
10.
Les
,
A.
,
Shadden
,
S.
,
Figueroa
,
C.
,
Park
,
J.
,
Tedesco
,
M.
,
Herfkens
,
R.
,
Dalman
,
R.
, and
Taylor
,
C.
,
2010
, “
Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1288
1313
.10.1007/s10439-010-9949-x
11.
Castro
,
M. A.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2006
, “
Computational Fluid Dynamics Modeling of Intracranial Aneurysms: Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics
,”
Am. J. Neuroradiol.
,
27
(
8
), pp.
1703
1709
.
12.
LaDisa
,
J. F.
, Jr.
,
Olson
,
L.
,
Guler
,
I.
,
Hettrick
,
D.
,
Audi
,
S.
,
Kersten
,
J.
,
Warltier
,
D.
, and
Pagel
,
P.
,
2004
, “
Stent Design Properties and Deployment Ratio Influence Indices of Wall Shear Stress: A 3D Computational Fluid Dynamics Investigation Within a Normal Artery
,”
J. Appl. Physiol.
,
97
(
1
), pp.
424
430
.10.1152/japplphysiol.01329.2003
13.
LaDisa
,
J. F.
, Jr.
,
Olson
,
L.
,
Molthen
,
R.
,
Hettrick
,
D.
,
Hardel
,
M.
,
Pratt
,
P.
,
Kersten
,
J.
,
Warltier
,
D.
, and
Pagel
,
P.
,
2005
, “
Alterations in Wall Shear Stress Predict Sites of Neointimal Hyperplasia After Stent Implantation in Rabbit Iliac Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
288
(
5
), pp.
H2465
H2475
.10.1152/ajpheart.01107.2004
14.
Gundert
,
T. J.
,
Marsden
,
A. L.
,
Yang
,
W.
,
Marks
,
D. S.
, and
LaDisa
,
J. F.
,
2012
, “
Identification of Hemodynamically Optimal Coronary Stent Designs Based on Vessel Caliber
,”
IEEE Trans. Biomed. Eng.
,
59
(
7
), pp.
1992
2002
.10.1109/TBME.2012.2196275
15.
Gundert
,
T.
,
Marsden
,
A.
,
Yang
,
W.
, and
LaDisa
,
J.
,
2012
, “
Optimization of Cardiovascular Stent Design Using Computational Fluid Dynamics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011002
.10.1115/1.4005542
16.
Long
,
C.
,
Marsden
,
A.
, and
Bazilevs
,
Y.
,
2013
, “
Fluid–Structure Interaction Simulation of Pulsatile Ventricular Assist Devices
,”
Comput. Mech.
52
(
5
), pp.
971
981
.10.1007/s00466-013-0858-3
17.
Figueroa
,
C.
,
Taylor
,
C.
,
Chiou
,
A.
,
Yeh
,
V.
, and
Zarins
,
C.
,
2009
, “
Magnitude and Direction of Pulsatile Displacement Forces Acting on Thoracic Aortic Endografts
,”
J. Endovasc. Ther.
,
16
(
3
), pp.
350
358
.10.1583/09-2738.1
18.
Lonyai
,
A.
,
Dubin
,
A. M.
,
Feinstein
,
J. A.
,
Taylor
,
C. A.
, and
Shadden
,
S. C.
,
2010
, “
New Insights Into Pacemaker Lead-Induced Venous Occlusion: Simulation-Based Investigation of Alterations in Venous Biomechanics
,”
Cardiovasc. Eng.
,
10
(
2
), pp.
84
90
.10.1007/s10558-010-9096-x
19.
Kung
,
E.
,
Les
,
A.
,
Figueroa
,
C.
,
Medina
,
F.
,
Arcaute
,
K.
,
Wicker
,
R.
,
McConnell
,
M.
, and
Taylor
,
C.
,
2011
, “
In Vitro Validation of Finite Element Analysis of Blood Flow in Deformable Models
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1947
1960
.10.1007/s10439-011-0284-7
20.
Vukicevic
,
M.
,
Chiulli
,
J. A.
,
Conover
,
T.
,
Pennati
,
G.
,
Hsia
,
T. Y.
, and
Figliola
,
R. S.
,
2013
, “
Mock Circulatory System of the Fontan Circulation to Study Respiration Effects on Venous Flow Behavior
,”
Comput. Methods Appl. Mech. Eng.
,
59
(
3
), pp.
253
260
10.1097/MAT.0b013e318288a2ab.
21.
Gijsen
,
F. J. H.
,
Allanic
,
E.
,
Van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90 Deg Curved Tube
,”
J. Biomech.
,
32
(
7
), pp.
705
713
.10.1016/S0021-9290(99)00014-7
22.
Haynes
,
R. H.
, and
Burton
,
A. C.
,
1959
, “
Role of the Non-Newtonian Behavior of Blood in Hemodynamics
,”
Am. J. Physiol.
,
197
, pp.
943
950
.
23.
Karniadakis
,
G. E.
, and
Sherwin
,
S. J.
,
2005
, “
Spectral/HP Element Methods for Computational Fluid Dynamics
,”
Numerical Mathematics and Scientific Computation
,
Oxford Science Publications
,
New York
.
24.
Valen-Sendstad
,
K.
,
Mardal
,
K. A.
, and
Mortensen
,
M.
,
2011
, “
Direct Numerical Simulation of Transitional Flow in a Patient-Specific Intracranial Aneurysm
,”
J. Biomech.
,
44
(
16
), pp.
2826
2832
.10.1016/j.jbiomech.2011.08.015
25.
Schmidt
,
J. P.
,
Delp
,
S. L.
,
Sherman
,
M. A.
,
Taylor
,
C. A.
,
Pande
,
V. S.
, and
Altman
,
R. B.
,
2008
, “
The Simbios National Center: Systems Biology in Motion
,”
Proc. IEEE
,
96
(
8
), pp.
1266
1280
.10.1109/JPROC.2008.925454
26.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Hazlett
,
H. C.
,
Smith
,
R. G.
,
Ho
,
S.
,
Gee
,
J. C.
, and
Gerig
,
G.
,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
NeuroImage
,
31
(
3
), pp.
1116
1128
.10.1016/j.neuroimage.2006.01.015
27.
Zheng
,
Y.
,
Barbu
,
A.
,
Georgescu
,
B.
,
Scheuering
,
M.
, and
Comaniciu
,
D.
,
2008
, “
Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features
,”
IEEE Trans. Med. Imaging
,
27
(
11
), pp.
1668
1681
.10.1109/TMI.2008.2004421
28.
Zheng
,
Y.
,
Loziczonek
,
M.
,
Georgescu
,
B.
,
Zhou
,
S. K.
,
Vega-Higuera
,
F.
, and
Comaniciu
,
D.
,
2011
, “
Machine Learning Based Vesselness Measurement for Coronary Artery Segmentation in Cardiac CT Volumes
,”
Proc. SPIE Med. Imaging
,
7962
, pp.
79621K-1
79621K-12
10.1117/12.877233.
29.
Mansi
,
T.
,
Voigt
,
I.
,
Leonardi
,
B.
,
Pennec
,
X.
,
Durrleman
,
S.
,
Sermesant
,
M.
,
Delingette
,
H.
,
Taylor
,
A.
,
Boudjemline
,
Y.
,
Pongiglione
,
G.
, and
Ayache
,
N.
,
2011
, “
A Statistical Model for Quantification and Prediction of Cardiac Remodelling: Application to Tetralogy of Fallot
,”
IEEE Trans. Med. Imaging
,
30
(
9
), pp.
1605
1616
.10.1109/TMI.2011.2135375
30.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J.
, and
Taylor
,
C. A.
,
2006
, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5685
5706
.10.1016/j.cma.2005.11.011
31.
Xiong
,
G.
,
Figueroa
,
C.
,
Xiao
,
N.
, and
Taylor
,
C.
,
2011
, “
Simulation of Blood Flow in Deformable Vessels Using Subject-Specific Geometry and Spatially Varying Wall Properties
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
7
), pp.
1000
1016
.10.1002/cnm.1404
32.
Bazilevs
,
Y.
,
Hsu
,
M.
,
Sankaran
,
D. B. S.
, and
Marsden
,
A.
,
2009
, “
Computational Fluid–Structure Interaction: Methods and Application to a Total Cavopulmonary Connection
,”
Comput. Mech.
,
45
(
1
), pp.
77
89
.10.1007/s00466-009-0419-y
33.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Hughes
,
T. J. R.
, and
Zhang
,
Y.
,
2008
, “
Isogeometric Fluid–Structure Interaction: Theory, Algorithms, and Computations
,”
Comput. Mech.
,
43
(
1
), pp.
3
37
.10.1007/s00466-008-0315-x
34.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
(
3
), pp.
220
252
.10.1016/0021-9991(77)90100-0
35.
Bazilevs
,
Y.
,
Gohean
,
J.
,
Hughes
,
T.
,
Moser
,
R.
, and
Zhang
,
Y.
,
2009
, “
Patient-Specific Isogeometric Fluid–Structure Interaction Analysis of Thoracic Aortic Blood Flow Due to Implantation of the Jarvik 2000 Left Ventricular Assist Device
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3534
3550
.10.1016/j.cma.2009.04.015
36.
Bazilevs
,
Y.
,
Calo
,
V.
,
Zhang
,
Y.
, and
Hughes
,
T. J.
,
2006
, “
Isogeometric Fluid–Structure Interaction Analysis With Applications to Arterial Blood Flow
,”
Comput. Mech.
,
38
(
4–5
), pp.
310
322
.10.1007/s00466-006-0084-3
37.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.10.1016/j.cma.2005.04.014
38.
Vignon-Clementel
,
I.
,
Figueroa
,
C.
,
Jansen
,
K.
, and
Taylor
,
C.
,
2010
, “
Outflow Boundary Conditions for Three-Dimensional Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
625
640
.10.1080/10255840903413565
39.
Formaggia
,
L.
,
Lamponi
,
D.
, and
Quarteroni
,
A.
,
2003
, “
One-Dimensional Models for Blood Flow in Arteries
,”
J. Eng. Math.
,
47
(
3–4
), pp.
251
276
.10.1023/B:ENGI.0000007980.01347.29
40.
Formaggia
,
L.
,
Gerbeau
,
J.
,
Nobile
,
F.
, and
Quarteroni
,
A.
,
2001
, “
On the Coupling of 3D and 1D Navier–Stokes Equations for Flow Problems in Compliant Vessels
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
6–7
), pp.
561
582
.10.1016/S0045-7825(01)00302-4
41.
Balossino
,
R.
,
Pennati
,
G.
,
Migliavacca
,
F.
,
Formaggia
,
L.
,
Veneziani
,
A.
,
Tuveri
,
M.
, and
Dubini
,
G.
,
2009
, “
Computational Models to Predict Stenosis Growth in Carotid Arteries: Which is the Role of Boundary Conditions?
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
1
), pp.
113
123
.10.1080/10255840802356691
42.
Kim
,
H. J.
,
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
LaDisa
,
J. F.
,
Jansen
,
K. E.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
,
2009
, “
On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2153
2169
.10.1007/s10439-009-9760-8
43.
Kim
,
H.
,
Vignon-Clementel
,
I.
,
Coogan
,
J.
,
Figueroa
,
C.
,
Jansen
,
K.
, and
Taylor
,
C.
,
2010
, “
Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3195
3209
.10.1007/s10439-010-0083-6
44.
Corsini
,
C.
,
Cosentino
,
D.
,
Pennati
,
G.
,
Dubini
,
G.
,
Hsia
,
T.
, and
Migliavacca
,
F.
,
2011
, “
Multiscale Models of the Hybrid Palliation for Hypoplastic Left Heart Syndrome
,”
J. Biomech.
,
44
(
4
), pp.
767
770
.10.1016/j.jbiomech.2010.11.001
45.
Migliavacca
,
F.
,
Dubini
,
G.
,
Bove
,
E. L.
, and
de Leval
,
M. R.
,
2003
, “
Computational Fluid Dynamics Simulations in Realistic 3-D Geometries of the Total Cavopulmonary Anastomosis: The Influence of the Inferior Caval Anastomosis
,”
ASME J. Biomech. Eng.
,
125
(
6
), pp.
805
813
.10.1115/1.1632523
46.
Kung
,
E.
,
Baretta
,
A.
,
Baker
,
C.
,
Arbia
,
G.
,
Biglino
,
G.
,
Corsini
,
C.
,
Schievano
,
S.
,
Vignon-Clementel
,
I.
,
Dubini
,
G.
,
Pennati
,
G.
,
Taylor
,
A.
,
Dorfman
,
A.
,
Hlavacek
,
A. M.
,
Marsden
,
A. L.
,
Hsia
,
T. Y.
, and
Migliavacca
,
F.
,
Modeling Of Congenital Hearts Alliance (MOCHA)+Investigators
,
2013
, “
Predictive Modeling of the Virtual Hemi-Fontan Operation for Second Stage Single Ventricle Palliation: Two Patient-Specific Cases
,”
J. Biomech.
,
46
(
2
), pp.
423
429
.10.1016/j.jbiomech.2012.10.023
47.
Esmaily-Moghadam
,
M.
,
Migliavacca
,
F.
,
Vignon-Clementel
,
I. E.
,
Hsia
,
T.-Y.
, and
Marsden
,
A. L.
, and
Modeling of Congenital Hearts Alliance (MOCHA) Investigators
,
2012
, “
Optimization of Shunt Placement for the Norwood Surgery Using Multi-Domain Modeling
,”
ASME J. Biomech. Eng.
,
134
(
5
), p.
051002
.10.1115/1.4006814
48.
Urquiza
,
S.
,
Blanco
,
P.
,
Venere
,
M.
, and
Feijoo
,
R.
,
2006
, “
Multidimensional Modelling for the Carotid Artery Blood Flow
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
33–36
), pp.
4002
4017
.10.1016/j.cma.2005.07.014
49.
Blanco
,
P.
,
Feijoo
,
R.
, and
Urquiza
,
S.
,
2007
, “
A Unified Variational Approach for Coupling 3D–1D Models and Its Blood Flow Applications
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
41–44
), pp.
4391
4410
.10.1016/j.cma.2007.05.008
50.
Moghadam
,
M. E.
,
Vignon-Clementel
,
I.
,
Figliola
,
R.
, and
Marsden
,
A.
,
2013
, “
A Modular Numerical Method for Implicit 0D/3D Coupling in Cardiovascular Finite Element Simulations
,”
J. Comput. Phys.
,
244
(
1
), pp.
63
79
.10.1016/j.jcp.2012.07.035
51.
Ismail
,
M.
,
Gravemeier
,
V.
,
Comerford
,
A.
, and
Wall
,
W.
,
2014
, “
A Stable Approach for Coupling Multidimensional Cardiovascular and Pulmonary Networks Based on a Novel Pressure-Flow Rate or Pressure-Only Neumann Boundary Condition Formulation
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
4
), pp.
447
469
.10.1002/cnm.2611
52.
Kuprat
,
A.
,
Kabilan
,
S.
,
Carson
,
J.
,
Corley
,
R.
, and
Einstein
,
D.
,
2013
, “
A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling
,”
J. Comput. Phys.
,
244
, pp.
148
167
.10.1016/j.jcp.2012.10.021
53.
Quarteroni
,
A.
,
Ragni
,
S.
, and
Veneziani
,
A.
,
2001
, “
Coupling Between Lumped and Distributed Models for Blood Flow Problems
,”
Comput. Visualization Sci.
,
4
(
2
), pp.
111
124
.10.1007/s007910100063
54.
Formaggia
,
L.
,
Gerbeau
,
J.
,
Nobile
,
F.
, and
Quarteroni
,
A.
,
2002
, “
Numerical Treatment of Defective Boundary Conditions for the Navier–Stokes Equations
,”
SIAM J. Numer. Anal.
,
40
(
1
), pp.
376
401
.10.1137/S003614290038296X
55.
Leiva
,
J.
,
Blanco
,
P.
, and
Buscaglia
,
G.
,
2010
, “
Iterative Strong Coupling of Dimensionally-Heterogeneous Models
,”
Int. J. Numer. Methods Eng.
,
81
(
12
), pp.
1558
1580
10.1002/nme.2741.
56.
Kim
,
H.
,
Figueroa
,
C.
,
Hughes
,
T.
,
Jansen
,
K.
, and
Taylor
,
C.
,
2009
, “
Augmented Lagrangian Method for Constraining the Shape of Velocity Profiles at Outlet Boundaries for Three-Dimensional Finite Element Simulations of Blood Flow
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3551
3566
.10.1016/j.cma.2009.02.012
57.
Moghadam
,
M. E.
,
Bazilevs
,
Y.
,
Hsia
,
T.-Y.
,
Vignon-Clementel
,
I.
, and
Marsden
,
A.
,
2011
, “
A Comparison of Outlet Boundary Treatments for Prevention of Backflow Divergence With Relevance to Blood Flow Simulations
,”
Comput. Mech.
,
48
(
3
), pp.
277
291
.10.1007/s00466-011-0599-0
58.
Oakes
,
J. M.
,
Marsden
,
A. L.
,
Grandmont
,
C.
,
Shadden
,
S. C.
,
Darquenne
,
C.
, and
Vignon-Clementel
,
I. E.
,
2014
, “
Airflow and Particle Deposition Simulations in Health and Emphysema: From In Vitro to In Silico Animal Experiments
,”
Ann. Biomed. Eng.
,
42
(
4
), pp.
899
914
.10.1007/s10439-013-0954-8
59.
Gravemeier
,
V.
,
Comerford
,
A.
,
Yoshihara
,
L.
,
Ismail
,
M.
, and
Wall
,
W. A.
,
2012
, “
A Novel Formulation for Neumann Inflow Boundary Conditions in Biomechanics
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
5
), pp.
560
573
.10.1002/cnm.1490
60.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A. L.
,
2013
, “
A New Preconditioning Technique for Implicitly Coupled Multidomain Simulations With Applications to Hemodynamics
,”
Comput. Mech.
,
52
(
5
), pp.
1141
1152
.10.1007/s00466-013-0868-1
61.
Fontan
,
F.
, and
Baudet
,
E.
,
1971
, “
Surgical Repair of Tricuspid Atresia
,”
Thorax
,
26
(
3
), pp.
240
248
.10.1136/thx.26.3.240
62.
Dubini
,
G.
,
de Leval
,
M. R.
,
Pietrabissa
,
R.
,
Montevecchi
,
F. M.
, and
Fumero
,
R.
,
1996
, “
A Numerical Fluid Mechanical Study of Repaired Congenital Heart Defects: Application to the Total Cavopulmonary Connection
,”
J. Biomech.
,
29
(
1
), pp.
111
121
.10.1016/0021-9290(95)00021-6
63.
Petrossian
,
E.
,
Reddy
,
V. M.
,
Collins
,
K. K.
,
Culbertson
,
C. B.
,
MacDonald
,
M. J.
,
Lamberti
,
J. J.
,
Reinhartz
,
O.
,
Mainwaring
,
R. D.
,
Francis
,
P. D.
,
Malhotra
,
S. P.
,
Gremmels
,
D. B.
,
Suleman
,
S.
, and
Hanley
,
F. L.
,
2006
, “
The Extracardiac Conduit Fontan Operation Using Minimal Approach Extracorporeal Circulation: Early and Midterm Outcomes
,”
J. Thorac. Cardiovasc. Surg.
,
132
(
5
), pp.
1054
1063
.10.1016/j.jtcvs.2006.05.066
64.
Marsden
,
A. L.
,
Vignon-Clementel
,
I. E.
,
Chan
,
F.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
,
2007
, “
Effects of Exercise and Respiration on Hemodynamic Efficiency in CFD Simulations of the Total Cavopulmonary Connection
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
250
263
.10.1007/s10439-006-9224-3
65.
Whitehead
,
K. K.
,
Pekkan
,
K.
,
Kitahima
,
H. D.
,
Paridon
,
S. M.
,
Yoganathan
,
A. P.
, and
Fogel
,
M. A.
,
2007
, “
Nonlinear Power Loss During Exercise in Single-Ventricle Patients After the Fontan: Insights From Computational Fluid Dynamics
,”
Circulation
,
116
(
11 Suppl.
), pp.
I-165
I-171
.10.1161/CIRCULATIONAHA.106.680827
66.
DeGroff
,
C. G.
,
2008
, “
Modeling the Fontan Circulation: Where We Are and Where We Need to Go
,”
Pediatr. Cardiol.
,
29
(
1
), pp.
3
12
.10.1007/s00246-007-9104-0
67.
Soerensen
,
D. D.
,
Pekkan
,
K.
,
de Zelicourt
,
D.
,
Sharma
,
S.
,
Kanter
,
K.
,
Fogel
,
M.
, and
Yoganathan
,
A.
,
2007
, “
Introduction of a New Optimized Total Cavopulmonary Connection
,”
Ann. Thorac. Surg.
,
83
(
6
), pp.
2182
2190
.10.1016/j.athoracsur.2006.12.079
68.
Ensley
,
A. E.
,
Lynch
,
P.
,
Chatzimavroudis
,
G. P.
,
Lucas
,
C.
,
Sharma
,
S.
, and
Yoganathan
,
A. P.
,
1999
, “
Toward Designing the Optimal Total Cavopulmonary Connection: An In Vitro Study
,”
Ann. Thorac. Surg.
,
68
(
4
), pp.
1384
1390
.10.1016/S0003-4975(99)00560-3
69.
Healy
,
T. M.
,
Lucas
,
C.
, and
Yoganathan
,
A. P.
,
2001
, “
Noninvasive Fluid Dynamic Power Loss Assessments for Total Cavopulmonary Connections Using the Viscous Dissipation Function: A Feasibility Study
,”
ASME J. Biomech. Eng.
,
123
(
4
), pp.
317
324
.10.1115/1.1384875
70.
Ryu
,
K.
,
Healy
,
T. M.
,
Ensley
,
A. E.
,
Sharma
,
S.
,
Lucas
,
C.
, and
Yoganathan
,
A. P.
,
2001
, “
Importance of Accurate Geometry in the Study of the Total Cavopulmonary Connection: Computational Simulations and In Vitro Experiments
,”
Ann. Biomed. Eng.
,
29
(
10
), pp.
844
853
.10.1114/1.1408930
71.
Baretta
,
A.
,
Corsini
,
C.
,
Yang
,
W.
,
Vignon-Clementel
,
I.
,
Marsden
,
A.
,
Feinstein
,
J.
,
Hsia
,
T.-Y.
,
Dubini
,
G.
,
Migliavacca
,
F.
, and
Pennati
,
G.
,
2011
, “
Virtual Surgeries in Patients With Congenital Heart Disease: A Multiscale Modelling Test Case
,”
Philos. R. Soc. Trans. A
,
369
(
1954
), pp.
4316
4330
.10.1098/rsta.2011.0130
72.
Marsden
,
A. L.
,
2013
, “
Simulation Based Planning of Surgical Interventions in Pediatric Cardiology
,”
Phys. Fluids
, (
25
), p.
101303
.10.1063/1.4825031
73.
Pekkan
,
K.
,
Dasi
,
L. P.
,
de Zelicourt
,
D.
,
Sundareswaran
,
K. S.
,
Fogel
,
M. A.
,
Kanter
,
K. R.
, and
Yoganathan
,
A. P.
,
2009
, “
Hemodynamic Performance of Stage-2 Univentricular Reconstruction: Glenn vs. Hemi-Fontan Templates
,”
Ann. Biomed. Eng.
,
37
(
1
), pp.
50
63
.10.1007/s10439-008-9591-z
74.
Kung
,
E. O.
,
Pennati
,
G.
,
Migliavacca
,
F.
,
Hsia
,
T.-Y.
,
Figliola
,
R.
,
Marsden
,
A.
, and
Giardini
,
A.
,
2014
, “
A Simulation Protocol for Exercise Physiology in Fontan Patients Using a Closed-Loop Lumped-Parameter Model
,”
ASME J. Biomech. Eng.
,
136
(
8
), p.
081007
.10.1115/1.4027271
75.
Hsia
,
T.-Y.
,
Cosentino
,
D.
,
Corsini
,
C.
,
Pennati
,
G.
,
Dubini
,
G.
, and
Migliavacca
,
F.
,
2011
, “
Use of Mathematical Modeling to Compare and Predict Hemodynamic Effects Between Hybrid and Surgical Norwood Palliations for Hypoplastic Left Heart Syndrome
,”
Circulation
,
124
(
11 Suppl.
), pp.
S204
S210
.10.1161/CIRCULATIONAHA.110.010769
76.
Hoffman
,
J.
, and
Spann
,
J. E.
,
1990
, “
Pressure-Flow Relations in Coronary Circulation
,”
Physiol. Rev.
,
70
(
2
), pp.
331
390
.
77.
Kim
,
H.
,
Vignon-Clementel
,
I.
,
Figueroa
,
C.
,
Jansen
,
K.
, and
Taylor
,
C.
,
2010
, “
Developing Computational Methods for Three-Dimensional Finite Element Simulations of Coronary Blood Flow
,”
Finite Elem. Anal. Des.
,
46
(
6
), pp.
514
525
.10.1016/j.finel.2010.01.007
78.
Krams
,
R.
,
Sipkema
,
P.
, and
Westerhof
,
N.
,
1989
, “
Varying Elastance Concept May Explain Coronary Systolic Flow Impediment
,”
Am. J. Physiol.
,
257
(
5 Pt 2
), pp.
H1471
H1479
.
79.
Torii
,
R.
,
Keegan
,
J.
,
Wood
,
N. B.
,
Dowsey
,
A. W.
,
Hughes
,
A. D.
,
Yang
,
G.-Z.
,
Firmin
,
D. N.
,
Thom
,
S. A. M.
, and
Xu
,
X. Y.
,
2010
, “
MR Image-Based Geometric and Hemodynamic Investigation of the Right Coronary Artery With Dynamic Vessel Motion
,”
Ann. Biomed. Eng.
,
38
(
8
), pp.
2606
2620
.10.1007/s10439-010-0008-4
80.
Taylor
,
C. A.
,
Fonte
,
T.
, and
Min
,
J.
,
2013
, “
Computational Fluid Dynamics Applied to Cardiac CT for Noninvasive Quantification of Fractional Flow Reserve: Scientific Basis
,”
J. Am. Coll. Cardiol.
,
61
(
22
), pp.
2233
2241
.10.1016/j.jacc.2012.11.083
81.
Smith
,
N. P.
,
2004
, “
A Computational Study of the Interaction Between Coronary Blood Flow and Myocardial Mechanics
,”
Physiol. Meas.
,
25
(
4
), pp.
863
877
.10.1088/0967-3334/25/4/007
82.
Vankan
,
J.
,
Huyghe
,
J. M.
,
Janssen
,
D.
,
Huson
,
A.
,
Hacking
,
W. J. G.
, and
Schreiner
,
W.
,
1997
, “
Finite Element Analysis of Blood Flow Through Biological Tissue
,”
Int. J. Eng. Sci.
,
35
(
4
), pp.
375
385
.10.1016/S0020-7225(96)00108-5
83.
Cookson
,
A.
,
Lee
,
J.
,
Michler
,
C.
,
Chabiniok
,
R.
,
Hyde
,
E.
,
Nordsletten
,
D.
,
Sinclair
,
M.
,
Siebes
,
M.
, and
Smith
,
N.
,
2012
, “
A Novel Porous Mechanical Framework for Modelling the Interaction Between Coronary Perfusion and Myocardial Mechanics
,”
J. Biomech.
,
45
(
5
), pp.
850
855
.10.1016/j.jbiomech.2011.11.026
84.
Lee
,
J.
, and
Smith
,
N. P.
,
2012
, “
The Multi-Scale Modeling of Coronary Blood Flow
,”
Ann. Biomed. Eng.
,
40
(
11
), pp.
2399
2413
.10.1007/s10439-012-0583-7
85.
Sankaran
,
S.
, and
Marsden
,
A.
,
2010
, “
The Impact of Uncertainty on Shape Optimization of Idealized Bypass Graft Models in Unsteady Flow
,”
Phys. Fluids
,
22
(
12
), p.
121902
.10.1063/1.3529444
86.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer Verlag
,
New York
10.1007/978-1-4612-3094-6.
87.
Xiu
,
D.
, and
Hesthaven
,
J.
,
2005
, “
High-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM J. Sci. Comput.
,
27
(
3
), pp.
1118
1139
.10.1137/040615201
88.
Babuška
,
I.
,
Nobile
,
F.
, and
Tempone
,
R.
,
2007
, “
A Stochastic Collocation Method for Elliptic Partial Differential Equations With Random Input Data
,”
SIAM J. Numer. Anal.
,
45
(
3
), pp.
1005
1034
.10.1137/050645142
89.
Sankaran
,
S.
, and
Marsden
,
A.
,
2011
, “
A Stochastic Collocation Method for Uncertainty Quantification and Propagation in Cardiovascular Simulations
,”
ASME J. Biomech. Eng.
,
133
(
3
), p.
031001
.10.1115/1.4003259
You do not currently have access to this content.