Abstract

For many decades, experimental solid mechanics has played a crucial role in characterizing and understanding the mechanical properties of natural and novel artificial materials. Recent advances in machine learning (ML) provide new opportunities for the field, including experimental design, data analysis, uncertainty quantification, and inverse problems. As the number of papers published in recent years in this emerging field is growing exponentially, it is timely to conduct a comprehensive and up-to-date review of recent ML applications in experimental solid mechanics. Here, we first provide an overview of common ML algorithms and terminologies that are pertinent to this review, with emphasis placed on physics-informed and physics-based ML methods. Then, we provide thorough coverage of recent ML applications in traditional and emerging areas of experimental mechanics, including fracture mechanics, biomechanics, nano- and micromechanics, architected materials, and two-dimensional materials. Finally, we highlight some current challenges of applying ML to multimodality and multifidelity experimental datasets, quantifying the uncertainty of ML predictions, and proposing several future research directions. This review aims to provide valuable insights into the use of ML methods and a variety of examples for researchers in solid mechanics to integrate into their experiments.

References

1.
Sciammarella
,
C. A.
, and
Sciammarella
,
F. M.
,
2012
,
Experimental Mechanics of Solids
,
Wiley
, New York.
2.
Kassner
,
M. E.
,
Nemat-Nasser
,
S.
,
Suo
,
Z.
,
Bao
,
G.
,
Barbour
,
J. C.
,
Brinson
,
L. C.
,
Espinosa
,
H.
, et al.,
2005
, “
New Directions in Mechanics
,”
Mech. Mater.
,
37
(
2–3
), pp.
231
259
.10.1016/j.mechmat.2004.04.009
3.
Davis
,
J. R.
,
2004
,
Tensile Testing
,
ASM International
, Phoenix, AZ.
4.
Chen
,
W. W.
, and
Song
,
B.
,
2010
,
Split Hopkinson (Kolsky) Bar: Design, Testing and Applications
,
Springer Science & Business Media
, New York.
5.
Abou-Sayed
,
A. S.
,
Clifton
,
R. J.
, and
Hermann
,
L.
,
1976
, “
The Oblique-Plate Impact Experiment
,”
Exp. Mech.
,
16
(
4
), pp.
127
132
.10.1007/BF02321106
6.
Espinosa
,
H. D.
, and
Nemat-Nasser
,
S.
,
2000
, “
Low-Velocity Impact Testing
,”
ASM Handbook
,
8
, pp.
539
559
.10.31399/asm.hb.v08.a0003304
7.
Espinosa
,
H. D.
,
Zhu
,
Y.
, and
Moldovan
,
N.
,
2007
, “
Design and Operation of a MEMS-Based Material Testing System for Nanomechanical Characterization
,”
J. Microelectromech. Syst.
,
16
(
5
), pp.
1219
1231
.10.1109/JMEMS.2007.905739
8.
Zhu
,
Y.
, and
Espinosa
,
H. D.
,
2005
, “
An Electromechanical Material Testing System for in Situ Electron Microscopy and Applications
,”
Proc. Natl. Acad. Sci. U. S. A.
,
102
(
41
), pp.
14503
14508
.10.1073/pnas.0506544102
9.
Prorok
,
B. C.
, et al.,
2004
, “
Micro-and Nanomechanics
,” Encyclopedia of Nanoscience and Nanotechnology,
Citeseer
, pp.
561
606
.
10.
Haque
,
M.
,
Espinosa
,
H.
, and
Lee
,
H.
,
2010
, “
MEMS for in Situ Testing—Handling, Actuation, Loading, and Displacement Measurements
,”
MRS Bull.
,
35
(
5
), pp.
375
381
.10.1557/mrs2010.570
11.
Bhowmick
,
S.
,
Espinosa
,
H.
,
Jungjohann
,
K.
,
Pardoen
,
T.
, and
Pierron
,
O.
,
2019
, “
Advanced Microelectromechanical Systems-Based Nanomechanical Testing: Beyond Stress and Strain Measurements
,”
MRS Bull.
,
44
(
6
), pp.
487
493
.10.1557/mrs.2019.123
12.
Higson
,
G. R.
,
1964
, “
Recent Advances in Strain Gauges
,”
J. Sci. Instrum.
,
41
(
7
), pp.
405
414
.10.1088/0950-7671/41/7/301
13.
Tiwari
,
V.
,
Sutton
,
M. A.
, and
McNeill
,
S. R.
,
2007
, “
Assessment of High Speed Imaging Systems for 2D and 3D Deformation Measurements: Methodology Development and Validation
,”
Exp. Mech.
,
47
(
4
), pp.
561
579
.10.1007/s11340-006-9011-y
14.
Walker
,
C. A.
,
1994
, “
A Historical Review of Moire Interferometry
,”
Exp. Mech.
,
34
(
4
), pp.
281
299
.10.1007/BF02325143
15.
Chu
,
T. C.
,
Ranson
,
W. F.
, and
Sutton
,
M. A.
,
1985
, “
Applications of Digital-Image-Correlation Techniques to Experimental Mechanics
,”
Exp. Mech.
,
25
(
3
), pp.
232
244
.10.1007/BF02325092
16.
Bay
,
B. K.
,
Smith
,
T. S.
,
Fyhrie
,
D. P.
, and
Saad
,
M.
,
1999
, “
Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-Ray Tomography
,”
Exp. Mech.
,
39
(
3
), pp.
217
226
.10.1007/BF02323555
17.
Petzing
,
J. N.
, and
Tyrer
,
J. R.
,
1998
, “
Recent Developments and Applications in Electronic Speckle Pattern Interferometry
,”
J. Strain Anal. Eng. Des.
,
33
(
2
), pp.
153
169
.10.1243/0309324981512887
18.
Doyle
,
J.
,
2002
, “
Inverse Methods in Experimental Mechanics
,”
Recent Advances in Experimental Mechanics: In Honor of Isaac M. Daniel
, pp.
585
594
.
19.
Tanaka
,
M.
, and
Dulikravich
,
G. S.
,
1998
,
Inverse Problems in Engineering Mechanics
,
Elsevier
, Japan.
20.
Montemayor
,
L.
,
Chernow
,
V.
, and
Greer
,
J. R.
,
2015
, “
Materials by Design: Using Architecture in Material Design to Reach New Property Spaces
,”
MRS Bull.
,
40
(
12
), pp.
1122
1129
.10.1557/mrs.2015.263
21.
Xia
,
X. X.
,
Spadaccini
,
C. M.
, and
Greer
,
J. R.
,
2022
, “
Responsive Materials Architected in Space and Time
,”
Nat. Rev. Mater.
,
7
(
9
), pp.
683
701
.10.1038/s41578-022-00450-z
22.
Mas-Ballesté
,
R.
,
Gómez-Navarro
,
C.
,
Gómez-Herrero
,
J.
, and
Zamora
,
F.
,
2011
, “
2D Materials: To Graphene and Beyond
,”
Nanoscale
,
3
(
1
), pp.
20
30
.10.1039/C0NR00323A
23.
Nathamgari
,
S. S. P.
,
Dong
,
S.
,
Medina
,
L.
,
Moldovan
,
N.
,
Rosenmann
,
D.
,
Divan
,
R.
,
Lopez
,
D.
,
Lauhon
,
L. J.
, and
Espinosa
,
H. D.
,
2019
, “
Nonlinear Mode Coupling and One-to-One Internal Resonances in a Monolayer WS2 Nanoresonator
,”
Nano Letters
,
19
(
6
), pp.
4052
4059
.10.1021/acs.nanolett.9b01442
24.
Greer
,
J. R.
, and
Park
,
J.
,
2018
, “
Additive Manufacturing of Nano- and Microarchitected Materials
,”
Nano Lett.
,
18
(
4
), pp.
2187
2188
.10.1021/acs.nanolett.8b00724
25.
Stewart
,
C. A.
,
Murray
,
S. P.
,
Suzuki
,
A.
,
Pollock
,
T. M.
, and
Levi
,
C. G.
,
2020
, “
Accelerated Discovery of Oxidation Resistant CoNi-Base γ/Γ'alloys With High L12 Solvus and Low Density
,”
Mater. Des.
,
189
, p.
108445
.10.1016/j.matdes.2019.108445
26.
Noh
,
J.
,
Kim
,
S.
,
Gu
,
G. h.
,
Shinde
,
A.
,
Zhou
,
L.
,
Gregoire
,
J. M.
, and
Jung
,
Y.
,
2019
, “
Unveiling New Stable Manganese Based Photoanode Materials Via Theoretical High-Throughput Screening and Experiments
,”
Chem. Commun.
,
55
(
89
), pp.
13418
13421
.10.1039/C9CC06736A
27.
Lin
,
Z.
,
Magagnosc
,
D. J.
,
Wen
,
J.
,
Oh
,
C.-S.
,
Kim
,
S.-M.
, and
Espinosa
,
H. D.
,
2021
, “
In-Situ SEM High Strain Rate Testing of Large Diameter Micropillars Followed by TEM and EBSD Postmortem Analysis
,”
Exp. Mech.
,
61
(
5
), pp.
739
752
.10.1007/s11340-021-00693-x
28.
Mitchell
,
T. M.
, and
Mitchell
,
T. M.
,
1997
,
Machine Learning
, Vol.
1
,
McGraw-Hill, New York
.
29.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.10.1038/nature14539
30.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2012
, “
ImageNet Classification With Deep Convolutional Neural Networks
,”
Proceedings of the 25th International Conference on Neural Information Processing Systems—Volume 1
,
Curran Associates
,
Lake Tahoe, NV
, pp.
1097
1105
.https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
31.
Hinton
,
G.
,
Deng
,
L.
,
Yu
,
D.
,
Dahl
,
G.
,
Mohamed
,
A-R.
,
Jaitly
,
N.
,
Senior
,
A.
,
Vanhoucke
,
V.
,
Nguyen
,
P.
,
Sainath
,
T.
, and
Kingsbury
,
B.
,
2012
, “
Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups
,”
IEEE Signal Process. Mag.
,
29
(
6
), pp.
82
97
.10.1109/MSP.2012.2205597
32.
Ramos
,
S.
, Gehrig, S. K., Pinggera, P., Franke, U., and Rother, C.,
2017
, “
Detecting Unexpected Obstacles for Self-Driving Cars: Fusing Deep Learning and Geometric Modeling
,”
IEEE Intelligent Vehicles Symposium (IV)
,
pp.
1025
1032
.https://www.researchgate.net/publication/311769489_Detecting_Unexpected_Obstacles_for_Self-Driving_Cars_Fusing_Deep_Learning_and_Geometric_Modeling
33.
Guo
,
K.
,
Yang
,
Z.
,
Yu
,
C.-H.
, and
Buehler
,
M. J.
,
2021
, “
Artificial Intelligence and Machine Learning in Design of Mechanical Materials
,”
Mater. Horiz.
,
8
(
4
), pp.
1153
1172
.10.1039/D0MH01451F
34.
Yang
,
S.
,
Choi
,
W.
,
Cho
,
B. W.
,
Agyapong‐Fordjour
,
F. O.
,
Park
,
S.
,
Yun
,
S. J.
,
Kim
,
H.
,
Han
,
Y.
,
Lee
,
Y. H.
,
Kim
,
K. K.
, and
Kim
,
Y.
,
2021
, “
Deep Learning-Assisted Quantification of Atomic Dopants and Defects in 2D Materials.
,”
Adv. Sci.
,
8
(
16
), p.
2101099
.10.1002/advs.202101099
35.
Unke
,
O. T.
,
Chmiela
,
S.
,
Sauceda
,
H. E.
,
Gastegger
,
M.
,
Poltavsky
,
I.
,
Schütt
,
K. T.
,
Tkatchenko
,
A.
, and
Müller
,
K.-R.
,
2021
, “
Machine Learning Force Fields
,”
Chem. Rev.
,
121
(
16
), pp.
10142
10186
.10.1021/acs.chemrev.0c01111
36.
Choudhary
,
K.
,
DeCost
,
B.
,
Chen
,
C.
,
Jain
,
A.
,
Tavazza
,
F.
,
Cohn
,
R.
,
Park
,
C. W.
,
Choudhary
,
A.
,
Agrawal
,
A.
,
Billinge
,
S. J. L.
,
Holm
,
E.
,
Ong
,
S. P.
, and
Wolverton
,
C.
,
2022
, “
Recent Advances and Applications of Deep Learning Methods in Materials Science
,”
NPJ Comput. Mater.
,
8
(
1
), p. 59.10.1038/s41524-022-00734-6
37.
Mueller
,
T.
,
A.G.
Kusne
, and
R.
Ramprasad
,
2016
, “
Machine Learning in Materials Science: Recent Progress and Emerging Applications
,”
Rev. Comput. Chem.
,
29
, pp.
186
273
.10.1002/9781119148739.ch4
38.
Butler
,
K. T.
,
Davies
,
D. W.
,
Cartwright
,
H.
,
Isayev
,
O.
, and
Walsh
,
A.
,
2018
, “
Machine Learning for Molecular and Materials Science
,”
Nature
,
559
(
7715
), pp.
547
555
.10.1038/s41586-018-0337-2
39.
Wang
,
A. Y.-T.
,
Murdock
,
R. J.
,
Kauwe
,
S. K.
,
Oliynyk
,
A. O.
,
Gurlo
,
A.
,
Brgoch
,
J.
,
Persson
,
K. A.
, and
Sparks
,
T. D.
,
2020
, “
Machine Learning for Materials Scientists: An Introductory Guide Toward Best Practices
,”
Chem. Mater.
,
32
(
12
), pp.
4954
4965
.10.1021/acs.chemmater.0c01907
40.
Himanen
,
L.
,
Geurts
,
A.
,
Foster
,
A. S.
, and
Rinke
,
P.
,
2019
, “
Data-Driven Materials Science: Status, Challenges, and Perspectives.
,”
Adv. Sci.
,
6
(
21
), p.
1900808
.10.1002/advs.201900808
41.
Masi
,
F.
,
Stefanou
,
I.
,
Vannucci
,
P.
, and
Maffi-Berthier
,
V.
,
2021
, “
Thermodynamics-Based Artificial Neural Networks for Constitutive Modeling
,”
J. Mech. Phys. Solids
,
147
, p.
104277
.10.1016/j.jmps.2020.104277
42.
Linka
,
K.
,
Hillgärtner
,
M.
,
Abdolazizi
,
K. P.
,
Aydin
,
R. C.
,
Itskov
,
M.
, and
Cyron
,
C. J.
,
2021
, “
Constitutive Artificial Neural Networks: A Fast and General Approach to Predictive Data-Driven Constitutive Modeling by Deep Learning
,”
J. Comput. Phys.
,
429
, p.
110010
.10.1016/j.jcp.2020.110010
43.
Yin
,
M.
,
Zhang
,
E.
,
Yu
,
Y.
, and
Karniadakis
,
G. E.
,
2022
, “
Interfacing Finite Elements With Deep Neural Operators for Fast Multiscale Modeling of Mechanics Problems
,”
Comput. Methods Appl. Mech. Eng.
,
402
, p.
115027
.10.1016/j.cma.2022.115027
44.
Alber
,
M.
,
Buganza Tepole
,
A.
,
Cannon
,
W. R.
,
De
,
S.
,
Dura-Bernal
,
S.
,
Garikipati
,
K.
,
Karniadakis
,
G.
,
Lytton
,
W. W.
,
Perdikaris
,
P.
,
Petzold
,
L.
, and
Kuhl
,
E.
,
2019
, “
Integrating Machine Learning and Multiscale Modeling—Perspectives, Challenges, and Opportunities in the Biological, Biomedical, and Behavioral Sciences
,”
NPJ Dig. Med.
,
2
(
1
), p.
115
.10.1038/s41746-019-0193-y
45.
Kumar
,
S.
,
Tan
,
S.
,
Zheng
,
L.
, and
Kochmann
,
D. M.
,
2020
, “
Inverse-Designed Spinodoid Metamaterials
,”
Npj Comput. Mater.
,
6
(
1
), p. 73.10.1038/s41524-020-0341-6
46.
Lu
,
L.
,
Dao
,
M.
,
Kumar
,
P.
,
Ramamurty
,
U.
,
Karniadakis
,
G. E.
, and
Suresh
,
S.
,
2020
, “
Extraction of Mechanical Properties of Materials Through Deep Learning From Instrumented Indentation
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
13
), pp.
7052
7062
.10.1073/pnas.1922210117
47.
Ni
,
B.
, and
Gao
,
H. J.
,
2021
, “
A Deep Learning Approach to the Inverse Problem of Modulus Identification in Elasticity
,”
MRS Bull.
,
46
(
1
), pp.
19
25
.10.1557/s43577-020-00006-y
48.
Zhang
,
E.
,
Yin
,
M.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Networks for Nonhomogeneous Material Identification in Elasticity Imaging
,”
arXiv:2009.04525.
49.
Zhang
,
E.
,
Dao
,
M.
,
Karniadakis
,
G. E.
, and
Suresh
,
S.
,
2022
, “
Analyses of Internal Structures and Defects in Materials Using Physics-Informed Neural Networks
,”
Sci. Adv.
,
8
(
7
), p. eabk0644.10.1126/sciadv.abk0644
50.
Psaros
,
A. F.
,
Meng
,
X.
,
Zou
,
Z.
,
Guo
,
L.
, and
Karniadakis
,
G. E.
,
2023
, “
Uncertainty Quantification in Scientific Machine Learning: Methods, Metrics, and Comparisons
,”
J. Comput. Phys.
,
477
, p.
111902
.10.1016/j.jcp.2022.111902
51.
Brodnik
,
N. R.
,
Muir
,
C.
,
Tulshibagwale
,
N.
,
Rossin
,
J.
,
Echlin
,
M. P.
,
Hamel
,
C. M.
,
Kramer
,
S. L. B.
,
Pollock
,
T. M.
,
Kiser
,
J. D.
,
Smith
,
C.
, and
Daly
,
S. H.
,
2023
, “
Perspective: Machine Learning in Experimental Solid Mechanics
,”
J. Mech. Phys. Solids
,
173
, p.
105231
.10.1016/j.jmps.2023.105231
52.
Wang
,
C.
,
Tan
,
X. P.
,
Tor
,
S. B.
, and
Lim
,
C. S.
,
2020
, “
Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives
,”
Addit. Manuf.
,
36
, p.
101538
.10.1016/j.addma.2020.101538
53.
Jin
,
Z.
,
Zhang
,
Z.
,
Demir
,
K.
, and
Gu
,
G. X.
,
2020
, “
Machine Learning for Advanced Additive Manufacturing
,”
Matter
,
3
(
5
), pp.
1541
1556
.10.1016/j.matt.2020.08.023
54.
Qin
,
J.
,
Hu
,
F.
,
Liu
,
Y.
,
Witherell
,
P.
,
Wang
,
C. C.
,
Rosen
,
D. W.
,
Simpson
,
T. W.
,
Lu
,
Y.
, and
Tang
,
Q.
,
2022
, “
Research and Application of Machine Learning for Additive Manufacturing
,”
Addit. Manuf.
,
52
, p.
102691
.10.1016/j.addma.2022.102691
55.
Zuo
,
C.
,
Qian
,
J.
,
Feng
,
S.
,
Yin
,
W.
,
Li
,
Y.
,
Fan
,
P.
,
Han
,
J.
,
Qian
,
K.
, and
Chen
,
Q.
,
2022
, “
Deep Learning in Optical Metrology: A Review
,”
Light Sci. Appl.
,
11
(
1
), p.
39
.10.1038/s41377-022-00714-x
56.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
1986
, “
Learning Representations by Back-Propagating Errors
,”
Nature
,
323
(
6088
), pp.
533
536
.10.1038/323533a0
57.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
, Cambridge, MA.
58.
OpenAI
,
2022
, “
ChatGPT
,” OpenAI, accessed July 24, 2023, https://chat.openai.com/
59.
Vaswani
,
A.
, Shazeer, N., Parmar, S., Uszkoreit, J., Jones, L., Gomez, A. N., and Kaiser, Ł.,
2017
, “
Attention is All You Need
,”
Adv. Neural Inform. Process. Syst.
,
30
, pp.
5998
6008
.https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
60.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
61.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.10.1038/s42254-021-00314-5
62.
Jin
,
H.
,
2021
, Big-Data-Driven Multi-Scale Experimental Study of Nanostructured Block Copolymer's Dynamic Toughness,
Ph.D. thesis
,
Brown University
, Providence, RI.https://www.proquest.com/openview/5142679fc26e2114d589edf261b80f69/1?pqorigsite=gscholar&cbl=18750&diss=y
63.
Von Luxburg
,
U.
,
2007
, “
A Tutorial on Spectral Clustering
,”
Stat. Comput.
,
17
(
4
), pp.
395
416
.10.1007/s11222-007-9033-z
64.
Muir
,
C.
,
Swaminathan
,
B.
,
Almansour
,
A. S.
,
Sevener
,
K.
,
Smith
,
C.
,
Presby
,
M.
,
Kiser
,
J. D.
,
Pollock
,
T. M.
, and
Daly
,
S.
,
2021
, “
Damage Mechanism Identification in Composites Via Machine Learning and Acoustic Emission
,”
Npj Comput. Mater.
,
7
(
1
), p.
95
.10.1038/s41524-021-00565-x
65.
Muir
,
C.
,
Swaminathan
,
B.
,
Fields
,
K.
,
Almansour
,
A. S.
,
Sevener
,
K.
,
Smith
,
C.
,
Presby
,
M.
,
Kiser
,
J. D.
,
Pollock
,
T. M.
, and
Daly
,
S.
,
2021
, “
A Machine Learning Framework for Damage Mechanism Identification From Acoustic Emissions in Unidirectional SiC/SiC Composites
,”
Npj Comput. Mater.
,
7
(
1
), p.
146
.10.1038/s41524-021-00620-7
66.
Agarap
,
A. F.
,
2018
, “
Deep Learning Using Rectified Linear Units (Relu)
,” arXiv Preprint
arXiv:1803.08375
.https://www.researchgate.net/publication/323956667_Deep_Learning_using_Rectified_Linear_Units_ReLU
67.
LeCun
,
Y.
,
Boser
,
B.
,
Denker
,
J. S.
,
Henderson
,
D.
,
Howard
,
R. E.
,
Hubbard
,
W.
, and
Jackel
,
L. D.
,
1989
, “
Backpropagation Applied to Handwritten Zip Code Recognition
,”
Neural Comput.
,
1
(
4
), pp.
541
551
.10.1162/neco.1989.1.4.541
68.
Lecun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2324
.10.1109/5.726791
69.
Holm
,
E. A.
,
Cohn
,
R.
,
Gao
,
N.
,
Kitahara
,
A. R.
,
Matson
,
T. P.
,
Lei
,
B.
, and
Yarasi
,
S. R.
,
2020
, “
Overview: Computer Vision and Machine Learning for Microstructural Characterization and Analysis
,”
Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
,
51
(
12
), pp.
5985
5999
.10.1007/s11661-020-06008-4
70.
Jin
,
H.
,
Jiao
,
T.
,
Clifton
,
R. J.
, and
Kim
,
K.-S.
,
2022
, “
Dynamic Fracture of a Bicontinuously Nanostructured Copolymer: A Deep-Learning Analysis of Big-Data-Generating Experiment
,”
J. Mech. Phys. Solids
,
164
, p.
104898
.10.1016/j.jmps.2022.104898
71.
Kaviani
,
R.
, and
Kolinski
,
J. M.
,
2023
, “
High Resolution Interferometric Imaging of Liquid-Solid Interfaces With HOTNNET
,”
Exp. Mech.
,
63
(
2
), pp.
309
321
.10.1007/s11340-022-00912-z
72.
Landauer
,
A. K.
,
Patel
,
M.
,
Henann
,
D. L.
, and
Franck
,
C.
,
2018
, “
A q-Factor-Based Digital Image Correlation Algorithm (qDIC) for Resolving Finite Deformations With Degenerate Speckle Patterns
,”
Exp. Mech.
,
58
(
5
), pp.
815
830
.10.1007/s11340-018-0377-4
73.
Yang
,
J.
, and
Bhattacharya
,
K.
,
2019
, “
Augmented Lagrangian Digital Image Correlation
,”
Exp. Mech.
,
59
(
2
), pp.
187
205
.10.1007/s11340-018-00457-0
74.
Yang
,
J.
, and
Bhattacharya
,
K.
,
2021
, “
Fast Adaptive Mesh Augmented Lagrangian Digital Image Correlation
,”
Exp. Mech.
,
61
(
4
), pp.
719
735
.10.1007/s11340-021-00695-9
75.
Yang
,
R.
,
Li
,
Y.
,
Zeng
,
D.
, and
Guo
,
P.
,
2022
, “
Deep DIC: Deep Learning-Based Digital Image Correlation for End-to-End Displacement and Strain Measurement
,”
J. Mater. Process. Technol.
,
302
, p.
117474
.10.1016/j.jmatprotec.2021.117474
76.
Patino
,
C. A.
,
Pathak
,
N.
,
Mukherjee
,
P.
,
Park
,
S. H.
,
Bao
,
G.
, and
Espinosa
,
H. D.
,
2022
, “
Multiplexed High-Throughput Localized Electroporation Workflow With Deep Learning–Based Analysis for Cell Engineering
,”
Sci. Adv.
,
8
(
29
), p.
eabn7637
.10.1126/sciadv.abn7637
77.
Mukherjee
,
P.
,
Patino
,
C. A.
,
Pathak
,
N.
,
Lemaitre
,
V.
, and
Espinosa
,
H. D.
,
2022
, “
Deep Learning‐Assisted Automated Single Cell Electroporation Platform for Effective Genetic Manipulation of Hard‐to‐Transfect Cells
,”
Small
,
18
(
20
), p.
2107795
.10.1002/smll.202107795
78.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.10.1162/neco.1997.9.8.1735
79.
Hsu
,
Y. C.
,
Yu
,
C. H.
, and
Buehler
,
M. J.
,
2020
, “
Using Deep Learning to Predict Fracture Patterns in Crystalline Solids
,”
Matter
,
3
(
1
), pp.
197
211
.10.1016/j.matt.2020.04.019
80.
Lew
,
A. J.
,
Yu
,
C.-H.
,
Hsu
,
Y.-C.
, and
Buehler
,
M. J.
,
2021
, “
Deep Learning Model to Predict Fracture Mechanisms of Graphene
,”
Npj 2D Mater. Appl.
,
5
(
1
), p. 48.10.1038/s41699-021-00228-x
81.
Lew
,
A. J.
, and
Buehler
,
M. J.
,
2021
, “
A Deep Learning Augmented Genetic Algorithm Approach to Polycrystalline 2D Material Fracture Discovery and Design
,”
Appl. Phys. Rev.
,
8
(
4
), p.
041414
.10.1063/5.0057162
82.
Mozaffar
,
M.
,
Bostanabad
,
R.
,
Chen
,
W.
,
Ehmann
,
K.
,
Cao
,
J.
, and
Bessa
,
M. A.
,
2019
, “
Deep Learning Predicts Path-Dependent Plasticity
,”
Proc. Natl. Acad. Sci.
,
116
(
52
), pp.
26414
26420
.10.1073/pnas.1911815116
83.
Scarselli
,
F.
,
Gori
,
M.
,
Hagenbuchner
,
M.
,
Monfardini
.,
G.
, and
Ah Chung Tsoi
,
M.
,
2009
, “
The Graph Neural Network Model
,”
IEEE Trans. Neural Networks
,
20
(
1
), pp.
61
80
.10.1109/TNN.2008.2005605
84.
Wu
,
S.
,
Sun
,
F.
,
Zhang
,
W.
,
Xie
,
X.
, and
Cui
,
B.
,
2023
, “
Graph Neural Networks in Recommender Systems: A Survey
,”
ACM Comput. Surv.
,
55
(
5
), pp.
1
37
.10.1145/3535101
85.
Fan
,
W.
, Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., and Yin, D.,
2019
, “
Graph Neural Networks for Social Recommendation
,”
The World Wide Web Conference
, pp.
417
426
.10.1145/3308558.3313488
86.
Xiong
,
Z.
,
Wang
,
D.
,
Liu
,
X.
,
Zhong
,
F.
,
Wan
,
X.
,
Li
,
X.
,
Li
,
Z.
,
Luo
,
X.
,
Chen
,
K.
,
Jiang
,
H.
, and
Zheng
,
M.
,
2020
, “
Pushing the Boundaries of Molecular Representation for Drug Discovery With the Graph Attention Mechanism
,”
J. Med. Chem.
,
63
(
16
), pp.
8749
8760
.10.1021/acs.jmedchem.9b00959
87.
Xie
,
T.
, and
Grossman
,
J. C.
,
2018
, “
Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
,”
Phys. Rev. Lett.
,
120
(
14
), p.
145301
.10.1103/PhysRevLett.120.145301
88.
Guo
,
K.
, and
Buehler
,
M. J.
,
2022
, “
Rapid Prediction of Protein Natural Frequencies Using Graph Neural Networks
,”
Dig. Discov.
,
1
(
3
), pp.
277
285
.10.1039/D1DD00007A
89.
Guo
,
K.
, and
Buehler
,
M. J.
,
2020
, “
A Semi-Supervised Approach to Architected Materials Design Using Graph Neural Networks
,”
Ext. Mech. Lett.
,
41
, p.
101029
.10.1016/j.eml.2020.101029
90.
Xue
,
T.
,
Adriaenssens
,
S.
, and
Mao
,
S.
,
2023
, “
Learning the Nonlinear Dynamics of Mechanical Metamaterials With Graph Networks
,”
Int. J. Mech. Sci.
,
238
, p.
107835
.10.1016/j.ijmecsci.2022.107835
91.
Hestroffer
,
J. M.
,
Charpagne
,
M.-A.
,
Latypov
,
M. I.
, and
Beyerlein
,
I. J.
,
2023
, “
Graph Neural Networks for Efficient Learning of Mechanical Properties of Polycrystals
,”
Comput. Mater. Sci.
,
217
, p.
111894
.10.1016/j.commatsci.2022.111894
92.
Thomas
,
A.
, Durmaz, A., Alam, M., and Gumbsch, P.,
2023
, “
Materials Fatigue Prediction Using Graph Neural Networks on Microstructure Representations
,” epub, pp.
1
16
.10.21203/rs.3.rs-2531505/v1
93.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2020
, “
Generative Adversarial Networks
,”
Commun. ACM
,
63
(
11
), pp.
139
144
.10.1145/3422622
94.
Holt
,
C. A.
, and
Roth
,
A. E.
,
2004
, “
The Nash Equilibrium: A Perspective
,”
Proc. Natl. Acad. Sci.
,
101
(
12
), pp.
3999
4002
.10.1073/pnas.0308738101
95.
Mao
,
Y. W.
,
He
,
Q.
, and
Zhao
,
X. H.
,
2020
, “
Designing Complex Architectured Materials With Generative Adversarial Networks
,”
Sci. Adv.
,
6
(
17
)10.1126/sciadv.aaz4169 .
96.
Kench
,
S.
, and
Cooper
,
S. J.
,
2021
, “
Generating Three-Dimensional Structures From a Two-Dimensional Slice With Generative Adversarial Network-Based Dimensionality Expansion
,”
Nat. Mach. Intell.
,
3
(
4
), pp.
299
305
.10.1038/s42256-021-00322-1
97.
Salimans
,
T.
, Goodfellow, I., Zarembia, W., Cheung, V., Radford, A., and Chen, X.,
2016
, “
Improved Techniques for Training Gans
,”
Adv. Neural Inform. Process. Syst.
,
29
, pp.
2234
2242
.https://dl.acm.org/doi/10.5555/3157096.3157346
98.
Cang
,
R.
,
Xu
,
Y.
,
Chen
,
S.
,
Liu
,
Y.
,
Jiao
,
Y.
, and
Yi Ren
,
M.
,
2017
, “
Microstructure Representation and Reconstruction of Heterogeneous Materials Via Deep Belief Network for Computational Material Design
,”
ASME J. Mech. Des.
,
139
(
7
), p.
071404
.10.1115/1.4036649
99.
Mirza
,
M.
, and
Osindero
,
S.
,
2014
, “
Conditional Generative Adversarial Nets
,”
arXiv:1411.1784
.10.48550/arXiv.1411.1784
100.
Nie
,
Z.
,
Lin
,
T.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2021
, “
TopologyGAN: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain
,”
ASME J. Mech. Des.
,
143
(
3
), p. 031715.10.1115/1.4049533
101.
Isola
,
P.
, Zhu, J-Y., Zhou, T., and Afros, A. A.,
2016
, “
Image-to-Image Translation With Conditional Adversarial Networks
,”
arXiv:1611.07004
.10.48550/arXiv.1611.07004
102.
Rezaei
,
M.
, Harmuth, K., Gierke, W., Kellermeier, T., Fischer, M., Yang, H., and Meinel, C.,
2017
, “
Conditional Adversarial Network for Semantic Segmentation of Brain Tumor
,”
arXiv:1708.05227
.10.48550/arXiv.1708.05227
103.
Yang
,
Z.
,
Yu
,
C.-H.
,
Guo
,
K.
, and
Buehler
,
M. J.
,
2021
, “
End-to-End Deep Learning Method to Predict Complete Strain and Stress Tensors for Complex Hierarchical Composite Microstructures
,”
J. Mech. Phys. Solids
,
154
, p.
104506
.10.1016/j.jmps.2021.104506
104.
Yang
,
Z. Z.
,
Yu
,
C. H.
, and
Buehler
,
M. J.
,
2021
, “
Deep Learning Model to Predict Complex Stress and Strain Fields in Hierarchical Composites
,”
Sci. Adv.
,
7
(
15
), p. eabd7416.10.1126/sciadv.abd7416
105.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
,
MIT Press
, Cambridge, MA.
106.
Mousavi
,
S. S.
,
Schukat
,
M.
, and
Howley
,
E.
,
2018
, “
Deep Reinforcement Learning: An Overview
,”
Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016
, Vol.
2
.
Springer
, pp.
426
440
.10.1007/978-3-319-56991-8_32
107.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Rusu
,
A. A.
,
Veness
,
J.
,
Bellemare
,
M. G.
,
Graves
,
A.
, et al.,
2015
, “
Human-Level Control Through Deep Reinforcement Learning
,”
Nature
,
518
(
7540
), pp.
529
533
.10.1038/nature14236
108.
Lillicrap
,
T. P.
, Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.,
2015
, “
Continuous Control With Deep Reinforcement Learning
,” arXiv Preprint
arXiv:1509.02971
.10.48550/arXiv.1509.02971
109.
Silver
,
D.
,
Huang
,
A.
,
Maddison
,
C. J.
,
Guez
,
A.
,
Sifre
,
L.
,
van den Driessche
,
G.
,
Schrittwieser
,
J.
, et al.,
2016
, “
Mastering the Game of Go With Deep Neural Networks and Tree Search
,”
Nature
,
529
(
7587
), pp.
484
489
.10.1038/nature16961
110.
Singh
,
B.
,
Kumar
,
R.
, and
Singh
,
V. P.
,
2022
, “
Reinforcement Learning in Robotic Applications: A Comprehensive Survey
,”
Artif. Intell. Rev.
, 45, pp.
945
990
.10.1007/s10462-021-09997-9
111.
Popova
,
M.
,
Isayev
,
O.
, and
Tropsha
,
A.
,
2018
, “
Deep Reinforcement Learning for de Novo Drug Design
,”
Sci. Adv.
,
4
(
7
), p.
eaap7885
.10.1126/sciadv.aap7885
112.
Garnier
,
P.
,
Viquerat
,
J.
,
Rabault
,
J.
,
Larcher
,
A.
,
Kuhnle
,
A.
, and
Hachem
,
E.
,
2021
, “
A Review on Deep Reinforcement Learning for Fluid Mechanics
,”
Comput. Fluids
,
225
, p.
104973
.10.1016/j.compfluid.2021.104973
113.
Sui
,
F.
,
Guo
,
R.
,
Zhang
,
Z.
,
Gu
,
G. X.
, and
Lin
,
L.
,
2021
, “
Deep Reinforcement Learning for Digital Materials Design
,”
ACS Mater. Lett.
,
3
(
10
), pp.
1433
1439
.10.1021/acsmaterialslett.1c00390
114.
Nguyen
,
P. C. H.
,
Vlassis
,
N. N.
,
Bahmani
,
B.
,
Sun
,
W.
,
Udaykumar
,
H. S.
, and
Baek
,
S. S.
,
2022
, “
Synthesizing Controlled Microstructures of Porous Media Using Generative Adversarial Networks and Reinforcement Learning
,”
Sci. Rep.
,
12
(
1
), p.
9034
.10.1038/s41598-022-12845-7
115.
Box
,
G. E.
, and
Tiao
,
G. C.
,
2011
,
Bayesian Inference in Statistical Analysis
,
Wiley
, New York.
116.
Rappel
,
H.
,
Beex
,
L. A. A.
,
Hale
,
J. S.
,
Noels
,
L.
, and
Bordas
,
S. P. A.
,
2020
, “
A Tutorial on Bayesian Inference to Identify Material Parameters in Solid Mechanics
,”
Arch. Comput. Methods Eng.
,
27
(
2
), pp.
361
385
.10.1007/s11831-018-09311-x
117.
Zhang
,
Y.
,
Hart
,
J. D.
, and
Needleman
,
A.
,
2019
, “
Identification of Plastic Properties From Conical Indentation Using a Bayesian-Type Statistical Approach
,”
ASME J. Appl. Mech.
,
86
(
1
), p. 011002.10.1115/1.4041352
118.
Rossin
,
J.
,
Leser
,
P.
,
Pusch
,
K.
,
Frey
,
C.
,
Murray
,
S. P.
,
Torbet
,
C. J.
,
Smith
,
S.
,
Daly
,
S.
, and
Pollock
,
T. M.
,
2021
, “
Bayesian Inference of Elastic Constants and Texture Coefficients in Additively Manufactured Cobalt-Nickel Superalloys Using Resonant Ultrasound Spectroscopy
,”
Acta Mater.
,
220
, p.
117287
.10.1016/j.actamat.2021.117287
119.
Rossin
,
J.
,
Leser
,
P.
,
Pusch
,
K.
,
Frey
,
C.
,
Vogel
,
S. C.
,
Saville
,
A. I.
,
Torbet
,
C.
,
Clarke
,
A. J.
,
Daly
,
S.
, and
Pollock
,
T. M.
,
2022
, “
Single Crystal Elastic Constants of Additively Manufactured Components Determined by Resonant Ultrasound Spectroscopy
,”
Mater. Charact.
,
192
, p.
112244
.10.1016/j.matchar.2022.112244
120.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Physics Informed Deep Learning (Part i): Data-Driven Solutions of Nonlinear Partial Differential Equations
,” arXiv Preprint
arXiv:1711.10561
.10.48550/arXiv.1711.10561
121.
Lagaris
,
I. E.
,
Likas
,
A.
, and
Fotiadis
,
D. I.
,
1998
, “
Artificial Neural Networks for Solving Ordinary and Partial Differential Equations
,”
IEEE Trans. Neural Networks
,
9
(
5
), pp.
987
1000
.10.1109/72.712178
122.
Psichogios
,
D. C.
, and
Ungar
,
L. H.
,
1992
, “
A Hybrid Neural Network‐First Principles Approach to Process Modeling
,”
AIChE J.
,
38
(
10
), pp.
1499
1511
.10.1002/aic.690381003
123.
Cai
,
S.
,
Wang
,
Z.
,
Wang
,
S.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks for Heat Transfer Problems
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
6
), p. 060801.10.1115/1.4050542
124.
Cai
,
S.
,
Mao
,
Z.
,
Wang
,
Z.
,
Yin
,
M.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks (PINNs) for Fluid Mechanics: A Review
,”
Acta Mech. Sin.
,
37
(
12
), pp.
1727
1738
.10.1007/s10409-021-01148-1
125.
Raissi
,
M.
,
Yazdani
,
A.
, and
Karniadakis
,
G. E.
,
2020
, “
Hidden Fluid Mechanics: Learning Velocity and Pressure Fields From Flow Visualizations
,”
Science
,
367
(
6481
), pp.
1026
1030
.10.1126/science.aaw4741
126.
Mao
,
Z.
,
Jagtap
,
A. D.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Networks for High-Speed Flows
,”
Comput. Methods Appl. Mech. Eng.
,
360
, p.
112789
.10.1016/j.cma.2019.112789
127.
Rasht‐Behesht
,
M.
,
Huber
,
C.
,
Shukla
,
K.
, and
Karniadakis
,
G. E.
,
2022
, “
Physics‐Informed Neural Networks (PINNs) for Wave Propagation and Full Waveform Inversions
,”
J. Geophys. Res. Solid Earth
,
127
(
5
), p.
e2021JB023120
.10.1029/2021JB023120
128.
Chen
,
Y.
,
Lu
,
L.
,
Karniadakis
,
G. E.
, and
Dal Negro
,
L.
,
2020
, “
Physics-Informed Neural Networks for Inverse Problems in Nano-Optics and Metamaterials
,”
Opt. Exp.
,
28
(
8
), pp.
11618
11633
.10.1364/OE.384875
129.
Liao
,
S.
,
Xue
,
T.
,
Jeong
,
J.
,
Webster
,
S.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2023
, “
Hybrid Thermal Modeling of Additive Manufacturing Processes Using Physics-Informed Neural Networks for Temperature Prediction and Parameter Identification
,”
Comput. Mech.
,
72
(
3
), pp.
499
512
.10.1007/s00466-022-02257-9
130.
Yin
,
M.
,
Zheng
,
X.
,
Humphrey
,
J. D.
, and
Karniadakis
,
G. E.
,
2021
, “
Non-Invasive Inference of Thrombus Material Properties With Physics-Informed Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
375
, p.
113603
.10.1016/j.cma.2020.113603
131.
Lu
,
L.
,
Meng
,
X.
,
Mao
,
Z.
, and
Karniadakis
,
G. E.
,
2021
, “
DeepXDE: A Deep Learning Library for Solving Differential Equations
,”
SIAM Rev.
,
63
(
1
), pp.
208
228
.10.1137/19M1274067
132.
Henkes
,
A.
,
Wessels
,
H.
, and
Mahnken
,
R.
,
2022
, “
Physics Informed Neural Networks for Continuum Micromechanics
,”
Comput. Methods Appl. Mech. Eng.
,
393
, p.
114790
.10.1016/j.cma.2022.114790
133.
Haghighat
,
E.
,
Raissi
,
M.
,
Moure
,
A.
,
Gomez
,
H.
, and
Juanes
,
R.
,
2021
, “
A Physics-Informed Deep Learning Framework for Inversion and Surrogate Modeling in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
379
, p.
113741
.10.1016/j.cma.2021.113741
134.
Bastek
,
J.-H.
, and
Kochmann
,
D. M.
,
2023
, “
Physics-Informed Neural Networks for Shell Structures
,”
Eur. J. Mech.-A/Solids
,
97
, p.
104849
.10.1016/j.euromechsol.2022.104849
135.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural Networks
,
2
(
5
), pp.
359
366
.10.1016/0893-6080(89)90020-8
136.
Chen
,
T.
, and
Chen
,
H.
,
1995
, “
Universal Approximation to Nonlinear Operators by Neural Networks With Arbitrary Activation Functions and Its Application to Dynamical Systems
,”
IEEE Trans. Neural Networks
,
6
(
4
), pp.
911
917
.10.1109/72.392253
137.
Lu
,
L.
,
Jin
,
P.
,
Pang
,
G.
,
Zhang
,
Z.
, and
Karniadakis
,
G. E.
,
2021
, “
Learning Nonlinear Operators Via DeepONet Based on the Universal Approximation Theorem of Operators
,”
Nat. Mach. Intell.
,
3
(
3
), pp.
218
229
.10.1038/s42256-021-00302-5
138.
Kovachki
,
N.
, Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., Anandkumar, A.,
2021
, “
Neural Operator: Learning Maps Between Function Spaces
,” arXiv Preprint
arXiv:2108.08481
.10.48550/arXiv.2108.08481
139.
Li
,
Z.
, Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.,
2020
, “
Fourier Neural Operator for Parametric Partial Differential Equations
,” arXiv Preprint
arXiv:2010.08895
.10.48550/arXiv.2010.08895
140.
Goswami
,
S.
, Bora, A., Yu, Y., and Em Karniadakis, G., “
Physics-Informed Deep Neural Operators Networks
,” arXiv Preprint
arXiv:2207.05748
, p.
2022
.10.48550/arXiv.2207.05748
141.
Lu
,
L.
,
Meng
,
X.
,
Cai
,
S.
,
Mao
,
Z.
,
Goswami
,
S.
,
Zhang
,
Z.
, and
Karniadakis
,
G. E.
,
2022
, “
A Comprehensive and Fair Comparison of Two Neural Operators (With Practical Extensions) Based on Fair Data
,”
Comput. Methods Appl. Mech. Eng.
,
393
, p.
114778
.10.1016/j.cma.2022.114778
142.
Li
,
Z.
, Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu, B., Azizzadenesheli, K., and Anandkumar, A.,
2021
, “
Physics-Informed Neural Operator for Learning Partial Differential Equations
,” arXiv Preprint
arXiv:2111.03794
.10.48550/arXiv.2111.03794
143.
Wang
,
S.
,
Wang
,
H.
, and
Perdikaris
,
P.
,
2021
, “
Learning the Solution Operator of Parametric Partial Differential Equations With Physics-Informed DeepONets
,”
Sci. Adv.
,
7
(
40
), p.
eabi8605
.10.1126/sciadv.abi8605
144.
Li
,
Z.
, Huang, D. Z., Liu, B., and Anandkumar, A.,
2022
, “
Fourier Neural Operator With Learned Deformations for PDES on General Geometries
,” arXiv Preprint
arXiv:2207.05209
.10.48550/arXiv.2207.05209
145.
Goswami
,
S.
,
Yin
,
M.
,
Yu
,
Y.
, and
Karniadakis
,
G. E.
,
2022
, “
A Physics-Informed Variational DeepONet for Predicting Crack Path.
,”
Comput. Methods Appl. Mech. Eng.
,
391
, p.
114587
.10.1016/j.cma.2022.114587
146.
Yin
,
M.
,
Ban
,
E.
,
Rego
,
B. V.
,
Zhang
,
E.
,
Cavinato
,
C.
,
Humphrey
,
J. D.
, and
Em Karniadakis
,
G.
,
2022
, “
Simulating Progressive Intramural Damage Leading to Aortic Dissection Using DeepONet: An Operator–Regression Neural Network
,”
J. R. Soc. Interface
,
19
(
187
), p.
20210670
. 10.1098/rsif.2021.0670
147.
Zhang
,
E.
,
Spronck
,
B.
,
Humphrey
,
J. D.
, and
Karniadakis
,
G. E.
,
2022
, “
G2Φnet: Relating Genotype and Biomechanical Phenotype of Tissues With Deep Learning
,”
PLoS Comput. Biol.
,
18
(
10
), p.
e1010660
.10.1371/journal.pcbi.1010660
148.
You
,
H.
,
Zhang
,
Q.
,
Ross
,
C. J.
,
Lee
,
C.-H.
,
Hsu
,
M.-C.
, and
Yu
,
Y.
,
2022
, “
A Physics-Guided Neural Operator Learning Approach to Model Biological Tissues From Digital Image Correlation Measurements
,”
ASME J. Biomech. Eng.
,
144
(
12
), p.
121012
.10.1115/1.4055918
149.
Liu
,
X.
,
Athanasiou
,
C. E.
,
Padture
,
N. P.
,
Sheldon
,
B. W.
, and
Gao
,
H.
,
2020
, “
A Machine Learning Approach to Fracture Mechanics Problems
,”
Acta Mater.
,
190
, pp.
105
112
.10.1016/j.actamat.2020.03.016
150.
Liu
,
X.
,
Athanasiou
,
C. E.
,
Padture
,
N. P.
,
Sheldon
,
B. W.
, and
Gao
,
H.
,
2021
, “
Knowledge Extraction and Transfer in Data-Driven Fracture Mechanics
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
23
), p. e2104765118.10.1073/pnas.2104765118
151.
Su
,
M.
,
Peng
,
H.
,
Yuan
,
M.
, and
Li
,
S.
,
2021
, “
Identification of the Interfacial Cohesive Law Parameters of FRP Strips Externally Bonded to Concrete Using Machine Learning Techniques
,”
Eng. Fract. Mech.
,
247
, p.
107643
.10.1016/j.engfracmech.2021.107643
152.
Ferdousi
,
S.
,
Chen
,
Q.
,
Soltani
,
M.
,
Zhu
,
J.
,
Cao
,
P.
,
Choi
,
W.
,
Advincula
,
R.
, and
Jiang
,
Y.
,
2021
, “
Characterize Traction-Separation Relation and Interfacial Imperfections by Data-Driven Machine Learning Models
,”
Sci. Rep.
,
11
(
1
), p. 14330.10.1038/s41598-021-93852-y
153.
Wei
,
C.
,
Zhang
,
J.
,
Liechti
,
K. M.
, and
Wu
,
C.
,
2022
, “
Deep-Green Inversion to Extract Traction-Separation Relations at Material Interfaces
,”
Int. J. Solids Struct.
,
250
, p.
111698
.10.1016/j.ijsolstr.2022.111698
154.
Niu
,
S. J.
, and
Srivastava
,
V.
,
2022
, “
Simulation Trained CNN for Accurate Embedded Crack Length, Location, and Orientation From Ultrasound Measurements
,”
Int. J. Solids Struct.
,
24
, p.
111521
.10.1016/j.ijsolstr.2022.111521
155.
Niu
,
S.
, and
Srivastava
,
V.
,
2022
, “
Ultrasound Classification of Interacting Flaws Using Finite Element Simulations and Convolutional Neural Network
,”
Eng. Comput.
,
38
(
5
), pp.
4653
4662
.10.1007/s00366-022-01681-y
156.
Athanasiou
,
C. E.
,
Liu
,
X.
,
Zhang
,
B.
,
Cai
,
T.
,
Ramirez
,
C.
,
Padture
,
N. P.
,
Lou
,
J.
,
Sheldon
,
B. W.
, and
Gao
,
H.
,
2023
, “
Integrated Simulation, Machine Learning, and Experimental Approach to Characterizing Fracture Instability in Indentation Pillar-Splitting of Materials
,”
J. Mech. Phys. Solids
,
170
, p.
105092
.10.1016/j.jmps.2022.105092
157.
Komaris
,
D.-S.
,
Perez-Valero
,
E.
,
Jordan
,
L.
,
Barton
,
J.
,
Hennessy
,
L.
,
O'Flynn
,
B.
, and
Tedesco
,
S.
,
2019
, “
Predicting Three-Dimensional Ground Reaction Forces in Running by Using Artificial Neural Networks and Lower Body Kinematics
,”
IEEE Access
,
7
, pp.
156779
156786
.10.1109/ACCESS.2019.2949699
158.
Eerdekens
,
A.
,
Deruyck
,
M.
,
Fontaine
,
J.
,
Martens
,
L.
,
Poorter
,
E. D.
, and
Joseph
,
W.
,
2020
, “
Automatic Equine Activity Detection by Convolutional Neural Networks Using Accelerometer Data
,”
Comput. Electron. Agric.
,
168
, p.
105139
.10.1016/j.compag.2019.105139
159.
Holzapfel
,
G. A.
,
Linka
,
K.
,
Sherifova
,
S.
, and
Cyron
,
C. J.
,
2021
, “
Predictive Constitutive Modelling of Arteries by Deep Learning
,”
J. R. Soc. Interface
,
18
(
182
), p.
20210411
.10.1098/rsif.2021.0411
160.
Liu
,
M.
,
Liang
,
L.
, and
Sun
,
W.
,
2019
, “
Estimation of In Vivo Constitutive Parameters of the Aortic Wall Using a Machine Learning Approach
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
201
217
.10.1016/j.cma.2018.12.030
161.
Kamali
,
A.
,
Sarabian
,
M.
, and
Laksari
,
K.
,
2023
, “
Elasticity Imaging Using Physics-Informed Neural Networks: Spatial Discovery of Elastic Modulus and Poisson's Ratio
,”
Acta Biomater.
,
155
, pp.
400
409
.10.1016/j.actbio.2022.11.024
162.
Goswami
,
S.
,
Li
,
D. S.
,
Rego
,
B. V.
,
Latorre
,
M.
,
Humphrey
,
J. D.
, and
Karniadakis
,
G. E.
,
2022
, “
Neural Operator Learning of Heterogeneous Mechanobiological Insults Contributing to Aortic Aneurysms
,”
J. R. Soc. Interface
,
19
(
193
), p.
20220410
. 10.1098/rsif.2022.0410
163.
Mukherjee
,
P.
,
Park
,
S. H.
,
Pathak
,
N.
,
Patino
,
C. A.
,
Bao
,
G.
, and
Espinosa
,
H. D.
,
2022
, “
Integrating Micro and Nano Technologies for Cell Engineering and Analysis: Toward the Next Generation of Cell Therapy Workflows
,”
ACS Nano
,
16
(
10
), pp.
15653
15680
.10.1021/acsnano.2c05494
164.
Patino
,
C. A.
,
Mukherjee
,
P.
,
Lemaitre
,
V.
,
Pathak
,
N.
, and
Espinosa
,
H. D.
,
2021
, “
Deep Learning and Computer Vision Strategies for Automated Gene Editing With a Single-Cell Electroporation Platform
,”
SLAS Technol. Transl. Life Sci. Innov.
,
26
(
1
), pp.
26
36
.10.1177/2472630320982320
165.
Muliana
,
A.
,
Haj-Ali
,
R. M.
,
Steward
,
R.
, and
Saxena
,
A.
,
2002
, “
Artificial Neural Network and Finite Element Modeling of Nanoindentation Tests
,”
Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
,
33
(
7
), pp.
1939
1947
.10.1007/s11661-002-0027-3
166.
Huber
,
N.
,
Konstantinidis
,
A.
, and
Tsakmakis
,
C.
,
2001
, “
Determination of Poisson's Ratio by Spherical Indentation Using Neural Networks—Part I: Theory
,”
ASME J. Appl. Mech.
,
68
(
2
), pp.
218
223
.10.1115/1.1354624
167.
Huber
,
N.
, and
Tsakmakis
,
C.
,
2001
, “
Determination of Poisson's Ratio by Spherical Indentation Using Neural networks - Part II: Identification Method
,”
ASME J. Appl. Mech.
,
68
(
2
), pp.
224
229
.10.1115/1.1355032
168.
Zhang
,
Y. P.
, and
Needleman
,
A.
,
2021
, “
Characterization of Plastically Compressible Solids Via Spherical Indentation
,”
J. Mech. Phys. Solids
,
148
, p.
104283
.10.1016/j.jmps.2020.104283
169.
Fernandez-Zelaia
,
P.
,
Roshan Joseph
,
V.
,
Kalidindi
,
S. R.
, and
Melkote
,
S. N.
,
2018
, “
Estimating Mechanical Properties From Spherical Indentation Using Bayesian Approaches
,”
Mater. Des.
,
147
, pp.
92
105
.10.1016/j.matdes.2018.03.037
170.
Chandrashekar
,
A.
,
Belardinelli
,
P.
,
Bessa
,
M. A.
,
Staufer
,
U.
, and
Alijani
,
F.
,
2022
, “
Quantifying Nanoscale Forces Using Machine Learning in Dynamic Atomic Force Microscopy
,”
Nanoscale Adv.
,
4
(
9
), pp.
2134
2143
.10.1039/D2NA00011C
171.
Herriott
,
C.
, and
Spear
,
A. D.
,
2020
, “
Predicting Microstructure-Dependent Mechanical Properties in Additively Manufactured Metals With Machine-and Deep-Learning Methods
,”
Comput. Mater. Sci.
,
175
, p.
109599
.10.1016/j.commatsci.2020.109599
172.
Sepasdar
,
R.
,
Karpatne
,
A.
, and
Shakiba
,
M.
,
2022
, “
A Data-Driven Approach to Full-Field Nonlinear Stress Distribution and Failure Pattern Prediction in Composites Using Deep Learning
,”
Comput. Methods Appl. Mech. Eng.
,
397
, p.
115126
.10.1016/j.cma.2022.115126
173.
Bulgarevich
,
D. S.
,
Tsukamoto
,
S.
,
Kasuya
,
T.
,
Demura
,
M.
, and
Watanabe
,
M.
,
2018
, “
Pattern Recognition With Machine Learning on Optical Microscopy Images of Typical Metallurgical Microstructures
,”
Sci. Rep.
,
8
(
1
), pp.
1
8
.10.1038/s41598-018-20438-6
174.
Alderete
,
N. A.
,
Pathak
,
N.
, and
Espinosa
,
H. D.
,
2022
, “
Machine Learning Assisted Design of Shape-Programmable 3D Kirigami Metamaterials
,”
NPJ Comput. Mater.
,
8
(
1
), p. 191.10.1038/s41524-022-00873-w
175.
Ma
,
C.
,
Chang
,
Y.
,
Wu
,
S.
, and
Zhao
,
R. R.
,
2022
, “
Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials
,”
ACS Appl. Mater. Interfaces
,
14
(
29
), pp.
33892
33902
.10.1021/acsami.2c09052
176.
Hsu
,
T.
,
Epting
,
W. K.
,
Kim
,
H.
,
Abernathy
,
H. W.
,
Hackett
,
G. A.
,
Rollett
,
A. D.
,
Salvador
,
P. A.
, and
Holm
,
E. A.
,
2021
, “
Microstructure Generation Via Generative Adversarial Network for Heterogeneous, Topologically Complex 3d Materials
,”
JOM
,
73
(
1
), pp.
90
102
.10.1007/s11837-020-04484-y
177.
Zhang
,
X.
,
Nguyen
,
H.
,
Paci
,
J. T.
,
Sankaranarayanan
,
S. K. R. S.
,
Mendoza-Cortes
,
J. L.
, and
Espinosa
,
H. D.
,
2021
, “
Multi-Objective Parametrization of Interatomic Potentials for Large Deformation Pathways and Fracture of Two-Dimensional Materials
,”
NPJ Comput. Mater.
,
7
(
1
), p. 113.10.1038/s41524-021-00573-x
178.
Zhang
,
X.
,
Nguyen
,
H.
,
Zhang
,
X.
,
Ajayan
,
P. M.
,
Wen
,
J.
, and
Espinosa
,
H. D.
,
2022
, “
Atomistic Measurement and Modeling of Intrinsic Fracture Toughness of Two-Dimensional Materials
,”
Proc. Natl. Acad. Sci.
,
119
(
45
), p.
e2206756119
.10.1073/pnas.2206756119
179.
Griffith
,
A. A.
,
1921
, “
VI. The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London. Ser. A
,
221
(
582–593
), pp.
163
198
.10.1098/rsta.1921.0006
180.
Zhu
,
X. K.
, and
Joyce
,
J. A.
,
2012
, “
Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization
,”
Eng. Fract. Mech.
,
85
, pp.
1
46
.10.1016/j.engfracmech.2012.02.001
181.
Zhang
,
E.
,
Bai
,
R.
,
Morelle
,
X. P.
, and
Suo
,
Z.
,
2018
, “
Fatigue Fracture of Nearly Elastic Hydrogels
,”
Soft Matter
,
14
(
18
), pp.
3563
3571
.10.1039/C8SM00460A
182.
Sun
,
J.-Y.
,
Zhao
,
X.
,
Illeperuma
,
W. R. K.
,
Chaudhuri
,
O.
,
Oh
,
K. H.
,
Mooney
,
D. J.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2012
, “
Highly Stretchable and Tough Hydrogels
,”
Naure
,
489
(
7414
), pp.
133
136
.10.1038/nature11409
183.
Liu
,
Z. L.
,
2020
, “
Deep Material Network With Cohesive Layers: Multi-Stage Training and Interfacial Failure Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
363
, p.
112913
.10.1016/j.cma.2020.112913
184.
Wang
,
K.
, and
Sun
,
W. C.
,
2019
, “
Meta-Modeling Game for Deriving Theory-Consistent, Microstructure-Based Traction-Separation Laws Via Deep Reinforcement Learning
,”
Comput. Methods Appl. Mech. Eng.
,
346
, pp.
216
241
.10.1016/j.cma.2018.11.026
185.
Worthington
,
M.
, and
Chew
,
H. B.
,
2023
, “
Crack Path Predictions in Heterogeneous Media by Machine Learning
,”
J. Mech. Phys. Solids
,
172
, p.
105188
.10.1016/j.jmps.2022.105188
186.
Chon
,
M. J.
,
Daly
,
M.
,
Wang
,
B.
,
Xiao
,
X.
,
Zaheri
,
A.
,
Meyers
,
M. A.
, and
Espinosa
,
H. D.
,
2017
, “
Lamellae Spatial Distribution Modulates Fracture Behavior and Toughness of African Pangolin Scales
,”
J. Mech. Behav. Biomed. Mater.
,
76
, pp.
30
37
.10.1016/j.jmbbm.2017.06.009
187.
García-Moreno
,
F.
,
Kamm
,
P. H.
,
Neu
,
T. R.
,
Bülk
,
F.
,
Mokso
,
R.
,
Schlepütz
,
C. M.
,
Stampanoni
,
M.
, and
Banhart
,
J.
,
2019
, “
Using X-Ray Tomoscopy to Explore the Dynamics of Foaming Metal
,”
Nat. Commun.
,
10
(
1
), p.
3762
.10.1038/s41467-019-11521-1
188.
Espinosa
,
H. D.
,
Bernal
,
R. A.
, and
Minary-Jolandan
,
M.
,
2012
, “
A Review of Mechanical and Electromechanical Properties of Piezoelectric Nanowires
,”
Adv. Mater.
,
24
(
34
), pp.
4656
4675
.10.1002/adma.201104810
189.
Ramachandramoorthy
,
R.
,
Gao
,
W.
,
Bernal
,
R.
, and
Espinosa
,
H.
,
2016
, “
High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition
,”
Nano Lett.
,
16
(
1
), pp.
255
263
.10.1021/acs.nanolett.5b03630
190.
Ramachandramoorthy
,
R.
,
Bernal
,
R.
, and
Espinosa
,
H. D.
,
2015
, “
Pushing the Envelope of in Situ Transmission Electron Microscopy
,”
ACS Nano
,
9
(
5
), pp.
4675
4685
.10.1021/acsnano.5b01391
191.
Bernal
,
R. A.
,
Ramachandramoorthy
,
R.
, and
Espinosa
,
H. D.
,
2015
, “
Double-Tilt in Situ TEM Holder With Multiple Electrical Contacts and Its Application in MEMS-Based Mechanical Testing of Nanomaterials
,”
Ultramicroscopy
,
156
, pp.
23
28
.10.1016/j.ultramic.2015.04.017
192.
Bernal
,
R. A.
,
Filleter
,
T.
,
Connell
,
J. G.
,
Sohn
,
K.
,
Huang
,
J.
,
Lauhon
,
L. J.
, and
Espinosa
,
H. D.
,
2014
, “
In Situ Electron Microscopy Four‐Point Electromechanical Characterization of Freestanding Metallic and Semiconducting Nanowires
,”
Small
,
10
(
4
), pp.
725
733
.10.1002/smll.201300736
193.
Sharma
,
A.
,
Mukhopadhyay
,
T.
, and
Kushvaha
,
V.
,
2022
, “
Experimental Data-Driven Uncertainty Quantification for the Dynamic Fracture Toughness of Particulate Polymer Composites
,”
Eng. Fract. Mech.
,
273
, p.
108724
.10.1016/j.engfracmech.2022.108724
194.
Niu
,
S.
,
Zhang
,
E.
,
Bazilevs
,
Y.
, and
Srivastava
,
V.
,
2023
, “
Modeling Finite-Strain Plasticity Using Physics Informed Neural Network and Assessment of the Network Performance
,”
J. Mech. Phys. Solids
,
172
, p.
105177
.10.1016/j.jmps.2022.105177
195.
Xu
,
B.-W.
,
Ye
,
S.
,
Li
,
M.
,
Zhao
,
H.-P.
, and
Feng
,
X.-Q.
,
2022
, “
Deep Learning Method for Predicting the Strengths of Microcracked Brittle Materials
,”
Eng. Fract. Mech.
,
271
, p.
108600
.10.1016/j.engfracmech.2022.108600
196.
Knudson
,
D. V.
, and
Knudson
,
D.
,
2007
,
Fundamentals of Biomechanics
, Vol.
183
,
Springer
, New York.
197.
Zhang
,
S.
,
Li
,
Y.
,
Zhang
,
S.
,
Shahabi
,
F.
,
Xia
,
S.
,
Deng
,
Y.
, and
Alshurafa
,
N.
,
2022
, “
Deep Learning in Human Activity Recognition With Wearable Sensors: A Review on Advances
,”
Sensors
,
22
(
4
), p.
1476
.10.3390/s22041476
198.
Halilaj
,
E.
,
Rajagopal
,
A.
,
Fiterau
,
M.
,
Hicks
,
J. L.
,
Hastie
,
T. J.
, and
Delp
,
S. L.
,
2018
, “
Machine Learning in Human Movement Biomechanics: Best Practices, Common Pitfalls, and New Opportunities
,”
J. Biomech.
,
81
, pp.
1
11
.10.1016/j.jbiomech.2018.09.009
199.
Phellan
,
R.
,
Hachem
,
B.
,
Clin
,
J.
,
Mac‐Thiong
,
J.
, and
Duong
,
L.
,
2021
, “
Real‐Time Biomechanics Using the Finite Element Method and Machine Learning: Review and Perspective
,”
Med. Phys.
,
48
(
1
), pp.
7
18
.10.1002/mp.14602
200.
Low
,
W. S.
,
Chan
,
C. K.
,
Chuah
,
J. H.
,
Tee
,
Y. K.
,
Hum
,
Y. C.
,
Salim
,
M. I. M.
, and
Lai
,
K. W.
,
2022
, “
A Review of Machine Learning Network in Human Motion Biomechanics
,”
J. Grid Comput.
,
20
(
1
), p.
4
.10.1007/s10723-021-09595-7
201.
Mouloodi
,
S.
,
Rahmanpanah
,
H.
,
Gohari
,
S.
,
Burvill
,
C.
,
Tse
,
K. M.
, and
Davies
,
H. M.
,
2021
, “
What Can Artificial Intelligence and Machine Learning Tell Us? A Review of Applications to Equine Biomechanical Research
,”
J. Mech. Behav. Biomed. Mater.
,
123
, p.
104728
.10.1016/j.jmbbm.2021.104728
202.
Gerbin
,
K. A.
,
Grancharova
,
T.
,
Donovan-Maiye
,
R. M.
,
Hendershott
,
M. C.
,
Anderson
,
H. G.
,
Brown
,
J. M.
,
Chen
,
J.
,
Dinh
,
S. Q.
,
Gehring
,
J. L.
,
Johnson
,
G. R.
,
Lee
,
H.
,
Nath
,
A.
,
Nelson
,
A. M.
,
Sluzewski
,
M. F.
,
Viana
,
M. P.
,
Yan
,
C.
,
Zaunbrecher
,
R. J.
,
Cordes Metzler
,
K. R.
,
Gaudreault
,
N.
,
Knijnenburg
,
T. A.
,
Rafelski
,
S. M.
,
Theriot
,
J. A.
, and
Gunawardane
,
R. N.
,
2021
, “
Cell States Beyond Transcriptomics: Integrating Structural Organization and Gene Expression in hiPSC-Derived Cardiomyocytes
,”
Cell Syst.
,
12
(
6
), pp.
670
687. e10
.10.1016/j.cels.2021.05.001
203.
Diab
,
M.
, Zhang, T., Zhao, R., Gao, H., and Kim, K-S.,
2013
, “
Ruga Mechanics of Creasing: From Instantaneous to Setback Creases
,”
Proc. R. Soc. A
,
469
(
2157
), p.
20120753
.10.1098/rspa.2012.0753
204.
Jin
,
H.
,
Landauer
,
A. K.
, and
Kim
,
K.-S.
,
2021
, “
Ruga Mechanics of Soft-Orifice Closure Under External Pressure
,”
Proc. R. Soc. A
,
477
(
2249
), p.
20210238
.10.1098/rspa.2021.0238
205.
Zhao
,
R.
,
Zhang
,
T.
,
Diab
,
M.
,
Gao
,
H.
, and
Kim
,
K.-S.
,
2015
, “
The Primary Bilayer Ruga-Phase Diagram I: Localizations in Ruga Evolution
,”
Ext. Mech. Lett.
,
4
, pp.
76
82
.10.1016/j.eml.2015.04.006
206.
Zhao
,
R.
,
Diab
,
M.
, and
Kim
,
K.-S.
,
2016
, “
The Primary Bilayer Ruga-Phase Diagram II: Irreversibility in Ruga Evolution
,”
ASME J. Appl. Mech.
,
83
(
9
), p.
091004
.10.1115/1.4033722
207.
Treloar
,
L.
,
1948
, “
Stresses and Birefringence in Rubber Subjected to General Homogeneous Strain
,”
Proc. Phys. Soc.
,
60
(
2
), pp.
135
144
.10.1088/0959-5309/60/2/303
208.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity–On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. Lond. A Math. Phys. Sci.
,
326
(
1567
), pp.
565
584
.
209.
Fung
,
Y-C.
,
2013
,
Biomechanics: Motion, Flow, Stress, and Growth
,
Springer Science & Business Media
, New York.
210.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast. Phys. Sci. Solids
,
61
, pp.
1
48
.10.1023/A:1010835316564
211.
Shi
,
L.
,
Yao
,
W.
,
Gan
,
Y.
,
Zhao
,
L. Y.
,
Eugene McKee
,
W.
,
Vink
,
J.
,
Wapner
,
R. J.
,
Hendon
,
C. P.
, and
Myers
,
K.
,
2019
, “
Anisotropic Material Characterization of Human Cervix Tissue Based on Indentation and Inverse Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
141
(
9
), p. 091017.10.1115/1.4043977
212.
Kakaletsis
,
S.
,
Meador
,
W. D.
,
Mathur
,
M.
,
Sugerman
,
G. P.
,
Jazwiec
,
T.
,
Malinowski
,
M.
,
Lejeune
,
E.
,
Timek
,
T. A.
, and
Rausch
,
M. K.
,
2021
, “
Right Ventricular Myocardial Mechanics: Multi-Modal Deformation, Microstructure, Modeling, and Comparison to the Left Ventricle
,”
Acta Biomater.
,
123
, pp.
154
166
.10.1016/j.actbio.2020.12.006
213.
Sugerman
,
G. P.
,
Kakaletsis
,
S.
,
Thakkar
,
P.
,
Chokshi
,
A.
,
Parekh
,
S. H.
, and
Rausch
,
M. K.
,
2021
, “
A Whole Blood Thrombus Mimic: Constitutive Behavior Under Simple Shear
,”
J. Mech. Behav. Biomed. Mater.
,
115
, p.
104216
.10.1016/j.jmbbm.2020.104216
214.
Kakaletsis
,
S.
,
Lejeune
,
E.
, and
Rausch
,
M. K.
,
2023
, “
Can Machine Learning Accelerate Soft Material Parameter Identification From Complex Mechanical Test Data?
,”
Biomech. Model. Mechanobiol.
,
22
(
1
), pp.
57
70
.10.1007/s10237-022-01631-z
215.
Holzapfel
,
G. A.
,
Niestrawska
,
J. A.
,
Ogden
,
R. W.
,
Reinisch
,
A. J.
, and
Schriefl
,
A. J.
,
2015
, “
Modelling Non-Symmetric Collagen Fibre Dispersion in Arterial Walls
,”
J. R. Soc. Interface
,
12
(
106
), p.
20150188
.10.1098/rsif.2015.0188
216.
Kirchdoerfer
,
T.
, and
Ortiz
,
M.
,
2016
, “
Data-Driven Computational Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
304
, pp.
81
101
.10.1016/j.cma.2016.02.001
217.
Eggersmann
,
R.
,
Kirchdoerfer
,
T.
,
Reese
,
S.
,
Stainier
,
L.
, and
Ortiz
,
M.
,
2019
, “
Model-Free Data-Driven Inelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
350
, pp.
81
99
.10.1016/j.cma.2019.02.016
218.
Stainier
,
L.
,
Leygue
,
A.
, and
Ortiz
,
M.
,
2019
, “
Model-Free Data-Driven Methods in Mechanics: Material Data Identification and Solvers
,”
Comput. Mech.
,
64
(
2
), pp.
381
393
.10.1007/s00466-019-01731-1
219.
Prume
,
E.
,
Reese
,
S.
, and
Ortiz
,
M.
,
2023
, “
Model-Free Data-Driven Inference in Computational Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
403
, p.
115704
.10.1016/j.cma.2022.115704
220.
Tac
,
V.
,
Sree
,
V. D.
,
Rausch
,
M. K.
, and
Tepole
,
A. B.
,
2022
, “
Data-Driven Modeling of the Mechanical Behavior of Anisotropic Soft Biological Tissue
,”
Eng. Comput.
,
38
(
5
), pp.
4167
4182
.10.1007/s00366-022-01733-3
221.
He
,
Q.
,
Laurence
,
D. W.
,
Lee
,
C.-H.
, and
Chen
,
J.-S.
,
2021
, “
Manifold Learning Based Data-Driven Modeling for Soft Biological Tissues
,”
J. Biomech.
,
117
, p.
110124
.10.1016/j.jbiomech.2020.110124
222.
Li
,
L.
, and
Chen
,
C.
,
2022
, “
Equilibrium-Based Convolution Neural Networks for Constitutive Modeling of Hyperelastic Materials
,”
J. Mech. Phys. Solids
,
164
, p.
104931
.10.1016/j.jmps.2022.104931
223.
Wang
,
J.
,
Li
,
T.
,
Cui
,
F.
,
Hui
,
C.-Y.
,
Yeo
,
J.
, and
Zehnder
,
A. T.
,
2021
, “
Metamodeling of Constitutive Model Using Gaussian Process Machine Learning
,”
J. Mech. Phys. Solids
,
154
, p.
104532
.10.1016/j.jmps.2021.104532
224.
Liu
,
M.
,
Liang
,
L.
, and
Sun
,
W.
,
2020
, “
A Generic Physics-Informed Neural Network-Based Constitutive Model for Soft Biological Tissues
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113402
.10.1016/j.cma.2020.113402
225.
Chen
,
M.
,
Sologubenko
,
A. S.
, and
Wheeler
,
J. M.
,
2023
, “
Exploring Defect Behavior and Size Effects in Micron-Scale Germanium From Cryogenic to Elevated Temperatures
,”
Matter
,
6
(
6
), pp.
1903
1927
.10.1016/j.matt.2023.03.025
226.
Greer
,
J. R.
, and
De Hosson
,
J. T. M.
,
2011
, “
Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effect
,”
Prog. Mater. Sci.
,
56
(
6
), pp.
654
724
.10.1016/j.pmatsci.2011.01.005
227.
Gu
,
X. W.
,
Loynachan
,
C. N.
,
Wu
,
Z.
,
Zhang
,
Y.-W.
,
Srolovitz
,
D. J.
, and
Greer
,
J. R.
,
2012
, “
Size-Dependent Deformation of Nanocrystalline Pt Nanopillars
,”
Nano Lett.
,
12
(
12
), pp.
6385
6392
.10.1021/nl3036993
228.
Rao
,
Z.
,
Jin
,
H.
,
Engwall
,
A.
,
Chason
,
E.
, and
Kim
,
K.-S.
,
2020
, “
Determination of Stresses in Incrementally Deposited Films From Wafer-Curvature Measurements
,”
ASME J. Appl. Mech.
,
87
(
10
), p. 101006.10.1115/1.4047572
229.
Chason
,
E.
,
Sheldon
,
B. W.
,
Freund
,
L. B.
,
Floro
,
J. A.
, and
Hearne
,
S. J.
,
2002
, “
Origin of Compressive Residual Stress in Polycrystalline Thin Films
,”
Phys. Rev. Lett.
,
88
(
15
), p. 156103.10.1103/PhysRevLett.88.156103
230.
Espinosa
,
H.
, Prorok, B. C., Peng, B., Kim, K. H., Moldovan, N., Auciello, O., Carlisle, J. A., Gruen, D. M., and Mancini, D. C.,
2002
, “
Mechanical Properties of Ultrananocrystalline Diamond Thin Films for MEMS Applications
,”
MRS Online Proc. Libr. (OPL)
,
741
, p. J9.2.1.https://www.researchgate.net/publication/227168764_Mechanical_Properties_of_Ultrananocrystalline_Diamond_Thin_Films_Relevant_to_MEMSNE MS_Devices
231.
Espinosa
,
H.
,
Prorok
,
B.
, and
Peng
,
B.
,
2004
, “
Plasticity Size Effects in Free-Standing Submicron Polycrystalline FCC Films Subjected to Pure Tension
,”
J. Mech. Phys. Solids
,
52
(
3
), pp.
667
689
.10.1016/j.jmps.2003.07.001
232.
Pugno
,
N.
,
Peng
,
B.
, and
Espinosa
,
H.
,
2005
, “
Predictions of Strength in MEMS Components With Defects––A Novel Experimental–Theoretical Approach
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
647
661
.10.1016/j.ijsolstr.2004.06.026
233.
Freund
,
L. B.
, and
Suresh
,
S.
,
2004
,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
,
Cambridge University Press
, Cambridge, UK.
234.
Greer
,
J. R.
,
Oliver
,
W. C.
, and
Nix
,
W. D.
,
2006
, “
Size Dependence in Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients (Vol 53, pg 1821, 2005).
,”
Acta Mater.
,
54
(
6
), pp.
1705
1705
.10.1016/j.actamat.2005.12.004
235.
Zhao
,
H.
,
Li
,
Z.
,
Gao
,
H.
, and
Lu
,
L.
,
2022
, “
Fracture and Toughening Mechanisms in Nanotwinned and Nanolayered Materials
,”
MRS Bull.
,
47
(
8
), pp.
839
847
.10.1557/s43577-022-00376-5
236.
Jin
,
H.
,
Zhou
,
J.
, and
Chen
,
Y.
,
2018
, “
Grain Size Gradient and Length Scale Effect on Mechanical Behaviors of Surface Nanocrystalline Metals
,”
Mater. Sci. Eng. A
,
725
, pp.
1
7
.10.1016/j.msea.2018.03.103
237.
Li
,
X.
,
Lu
,
L.
,
Li
,
J.
,
Zhang
,
X.
, and
Gao
,
H.
,
2020
, “
Mechanical Properties and Deformation Mechanisms of Gradient Nanostructured Metals and Alloys
,”
Nat. Rev. Mater.
,
5
(
9
), pp.
706
723
.10.1038/s41578-020-0212-2
238.
Lee
,
B.
,
Roh
,
S.
, and
Park
,
J.
,
2009
, “
Current Status of Micro- and Nano-Structured Optical Fiber Sensors
,”
Opt. Fiber Technol.
,
15
(
3
), pp.
209
221
.10.1016/j.yofte.2009.02.006
239.
Ramachandramoorthy
,
R.
,
Wang
,
Y.
,
Aghaei
,
A.
,
Richter
,
G.
,
Cai
,
W.
, and
Espinosa
,
H. D.
,
2017
, “
Reliability of Single Crystal Silver Nanowire-Based Systems: Stress Assisted Instabilities
,”
ACS Nano
,
11
(
5
), pp.
4768
4776
.10.1021/acsnano.7b01075
240.
Bernal
,
R. A.
,
Aghaei
,
A.
,
Lee
,
S.
,
Ryu
,
S.
,
Sohn
,
K.
,
Huang
,
J.
,
Cai
,
W.
, and
Espinosa
,
H.
,
2015
, “
Intrinsic Bauschinger Effect and Recoverable Plasticity in Pentatwinned Silver Nanowires Tested in Tension
,”
Nano Letters
,
15
(
1
), pp.
139
146
.10.1021/nl503237t
241.
Espinosa
,
H. D.
,
Bernal
,
R. A.
, and
Filleter
,
T.
,
2013
, “
In‐Situ TEM Electromechanical Testing of Nanowires and Nanotubes
,”
Nano Cell Mech. Fundam. Front.
, 8, pp.
191
226
.10.1002/smll.201200342
242.
Akinwande
,
D.
,
Brennan
,
C. J.
,
Bunch
,
J. S.
,
Egberts
,
P.
,
Felts
,
J. R.
,
Gao
,
H.
,
Huang
,
R.
, et al.,
2017
, “
A Review on Mechanics and Mechanical Properties of 2D Materials-Graphene and Beyond
,”
Ext. Mech. Lett.
,
13
, pp.
42
77
.10.1016/j.eml.2017.01.008
243.
Wei
,
X.
,
Meng
,
Z.
,
Ruiz
,
L.
,
Xia
,
W.
,
Lee
,
C.
,
Kysar
,
J. W.
,
Hone
,
J. C.
,
Keten
,
S.
, and
Espinosa
,
H. D.
,
2016
, “
Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation
,”
ACS Nano
,
10
(
2
), pp.
1820
1828
.10.1021/acsnano.5b04939
244.
Soler-Crespo
,
R. A.
,
Mao
,
L.
,
Wen
,
J.
,
Nguyen
,
H. T.
,
Zhang
,
X.
,
Wei
,
X.
,
Huang
,
J.
,
Nguyen
,
S. T.
, and
Espinosa
,
H. D.
,
2019
, “
Atomically Thin Polymer Layer Enhances Toughness of Graphene Oxide Monolayers
,”
Matter
,
1
(
2
), pp.
369
388
.10.1016/j.matt.2019.04.005
245.
Yang
,
Y.
,
Song
,
Z.
,
Lu
,
G.
,
Zhang
,
Q.
,
Zhang
,
B.
,
Ni
,
B.
,
Wang
,
C.
,
Li
,
X.
,
Gu
,
L.
,
Xie
,
X.
,
Gao
,
H.
, and
Lou
,
J.
,
2021
, “
Intrinsic Toughening and Stable Crack Propagation in Hexagonal Boron Nitride
,”
Nature
,
594
(
7861
), pp.
57
61
.10.1038/s41586-021-03488-1
246.
Choi
,
J. Y.
,
Zhang
,
X.
,
Nguyen
,
H. T.
,
Roenbeck
,
M. R.
,
Mao
,
L.
,
Soler-Crespo
,
R.
,
Nguyen
,
S. T.
, and
Espinosa
,
H. D.
,
2021
, “
Atomistic Mechanisms of Adhesion and Shear Strength in Graphene Oxide-Polymer Interfaces
,”
J. Mech. Phys. Solids
,
156
, p.
104578
.10.1016/j.jmps.2021.104578
247.
Lin
,
Z.
,
Novelino
,
L. S.
,
Wei
,
H.
,
Alderete
,
N. A.
,
Paulino
,
G. H.
,
Espinosa
,
H. D.
, and
Krishnaswamy
,
S.
,
2020
, “
Folding at the Microscale: Enabling Multifunctional 3D Origami‐Architected Metamaterials
,”
Small
,
16
(
35
), p.
2002229
.10.1002/smll.202002229
248.
Bauer
,
J.
,
Meza
,
L. R.
,
Schaedler
,
T. A.
,
Schwaiger
,
R.
,
Zheng
,
X.
, and
Valdevit
,
L.
,
2017
, “
Nanolattices: An Emerging Class of Mechanical Metamaterials.
,”
Adv. Mater.
,
29
(
40
), p.
1701850
.10.1002/adma.201701850
249.
Vyatskikh
,
A.
,
Delalande
,
S.
,
Kudo
,
A.
,
Zhang
,
X.
,
Portela
,
C. M.
, and
Greer
,
J. R.
,
2018
, “
Additive Manufacturing of 3D Nano-Architected Metals
,”
Nat. Commun.
,
9
(
1
), p.
593
.10.1038/s41467-018-03071-9
250.
Meza
,
L. R.
,
Das
,
S.
, and
Greer
,
J. R.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
.10.1126/science.1255908
251.
Bang
,
J.
,
Jeong
,
U.
,
Ryu
,
D. Y.
,
Russell
,
T. P.
, and
Hawker
,
C. J.
,
2009
, “
Block Copolymer Nanolithography: Translation of Molecular Level Control to Nanoscale Patterns
,”
Adv. Mater.
,
21
(
47
), pp.
4769
4792
.10.1002/adma.200803302
252.
Jin
,
H.
, Machnicki, C., Hegarty, J., Clifton, R. J., and Kim, K.-S.,
2022
, “Understanding the Nanoscale Deformation Mechanisms of Polyurea From In Situ AFM Tensile Experiments,” Challenges in Mechanics of Time Dependent Materials, Mechanics of Biological Systems and Materials & Micro-and Nanomechanics, Vol. 2:
Proceedings of the 2021 Annual Conference on Experimental and Applied Mechanics
, Springer, New York, pp. 97–100.10.1007/978-3-030-86737-9_6
253.
Kim
,
K.-S.
, et al.,
2021
, “
Dynamic Fracture-Toughness Testing of a Hierarchically Nano-Structured Solid
,”
Fracture, Fatigue, Failure and Damage Evolution, Volume 3: Proceedings of the 2020 Annual Conference on Experimental and Applied Mechanics
,
Springer
, New York, pp.
97
100
.10.1007/978-3-030-60959-7_16
254.
Xia
,
S.
,
Qi
,
Y.
,
Perry
,
T.
, and
Kim
,
K.
,
2009
, “
Strength Characterization of Al/Si Interfaces: A Hybrid Method of Nanoindentation and Finite Element Analysis.
,”
Acta Mater.
,
57
(
3
), pp.
695
707
.10.1016/j.actamat.2008.10.011
255.
Shen
,
Y.-L.
,
Williams
,
J. J.
,
Piotrowski
,
G.
,
Chawla
,
N.
, and
Guo
,
Y. L.
,
2001
, “
Correlation Between Tensile and Indentation Behavior of Particle-Reinforced Metal Matrix Composites: An Experimental and Numerical Study
,”
Acta Mater.
,
49
(
16
), pp.
3219
3229
.10.1016/S1359-6454(01)00226-9
256.
Nix
,
W. D.
, and
Gao
,
H. J.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.10.1016/S0022-5096(97)00086-0
257.
Papakyriakou
,
M.
,
Lu
,
M.
, and
Xia
,
S. M.
,
2022
, “
Nanoindentation Size Effects in Lithiated and Sodiated Battery Electrode Materials
,”
ASME J. Appl. Mech.
,
89
(
7
), p. 071007.10.1115/1.4054512
258.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
259.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3
20
.10.1557/jmr.2004.19.1.3
260.
Alkorta
,
J.
,
Martinez-Esnaola
,
J. M.
, and
Sevillano
,
J. G.
,
2005
, “
Absence of One-to-One Correspondence Between Elastoplastic Properties and Sharp-Indentation Load-Penetration Data (Vol 20, pg 432, 2005)
,”
J. Mater. Res.
,
20
(
2
), pp.
432
437
.10.1557/JMR.2005.0053
261.
Chen
,
X.
,
Ogasawara
,
N.
,
Zhao
,
M.
, and
Chiba
,
N.
,
2007
, “
On the Uniqueness of Measuring Elastoplastic Properties From Indentation: The Indistinguishable Mystical Materials
,”
J. Mech. Phys. Solids
,
55
(
8
), pp.
1618
1660
.10.1016/j.jmps.2007.01.010
262.
Cheng
,
Y. T.
, and
Cheng
,
C. M.
,
1999
, “
Can Stress-Strain Relationships Be Obtained From Indentation Curves Using Conical and Pyramidal Indenters?
,”
J. Mater. Res.
,
14
(
9
), pp.
3493
3496
.10.1557/JMR.1999.0472
263.
Espinosa
,
H.
,
Prorok
,
B.
, and
Fischer
,
M.
,
2003
, “
A Methodology for Determining Mechanical Properties of Freestanding Thin Films and MEMS Materials
,”
J. Mech. Phys. Solids
,
51
(
1
), pp.
47
67
.10.1016/S0022-5096(02)00062-5
264.
Needleman
,
A.
,
Tvergaard
,
V.
, and
Van der Giessen
,
E.
,
2015
, “
Indentation of Elastically Soft and Plastically Compressible Solids
,”
Acta Mech. Sin.
,
31
(
4
), pp.
473
480
.10.1007/s10409-015-0467-9
265.
Bower
,
A. F.
, et al.,
1993
, “
Indentation of a Power Law Creeping Solid
,”
Proc. R. Soc. Math. Phys. Sci.
,
441
(
1911
), pp.
97
124
.10.1098/rspa.1993.0050
266.
Lee
,
H.
,
Huen
,
W. Y.
,
Vimonsatit
,
V.
, and
Mendis
,
P.
,
2019
, “
An Investigation of Nanomechanical Properties of Materials Using Nanoindentation and Artificial Neural Network
,”
Sci. Rep.
,
9
(
1
), p. 13189.10.1038/s41598-019-49780-z
267.
Konstantopoulos
,
G.
,
Koumoulos
,
E. P.
, and
Charitidis
,
C. A.
,
2020
, “
Classification of Mechanism of Reinforcement in the Fiber-Matrix Interface: Application of Machine Learning on Nanoindentation Data
,”
Mater. Des.
,
192
, p.
108705
.10.1016/j.matdes.2020.108705
268.
Weng
,
J.
,
Lindvall
,
R.
,
Zhuang
,
K.
,
Ståhl
,
J.-E.
,
Ding
,
H.
, and
Zhou
,
J.
,
2020
, “
A Machine Learning Based Approach for Determining the Stress-Strain Relation of Grey Cast Iron From Nanoindentation
,”
Mech. Mater.
,
148
, p.
103522
.10.1016/j.mechmat.2020.103522
269.
Haj-Ali
,
R.
, et al.,
2008
, “
Nonlinear Constitutive Models From Nanoindentation Tests Using Artificial Neural Networks
,”
Int. J. Plast.
,
24
(
3
), pp.
371
396
.10.1016/j.ijplas.2007.02.001
270.
Han
,
G.
,
Marimuthu
,
K. P.
, and
Lee
,
H.
,
2022
, “
Evaluation of Thin Film Material Properties Using a Deep Nanoindentation and ANN
,”
Mater. Des.
,
221
, p.
111000
.10.1016/j.matdes.2022.111000
271.
Jeong
,
K.
,
Lee
,
K.
,
Lee
,
S.
,
Kang
,
S.-G.
,
Jung
,
J.
,
Lee
,
H.
,
Kwak
,
N.
,
Kwon
,
D.
, and
Han
,
H. N.
,
2022
, “
Deep Learning-Based Indentation Plastometry in Anisotropic Materials
,”
Int. J. Plast.
,
157
, p.
103403
.10.1016/j.ijplas.2022.103403
272.
Li
,
H.
,
Gutierrez
,
L.
,
Toda
,
H.
,
Kuwazuru
,
O.
,
Liu
,
W.
,
Hangai
,
Y.
,
Kobayashi
,
M.
, and
Batres
,
R.
,
2016
, “
Identification of Material Properties Using Nanoindentation and Surrogate Modeling
,”
Int. J. Solids Struct.
,
81
, pp.
151
159
.10.1016/j.ijsolstr.2015.11.022
273.
Kim
,
Y.
,
Gu
,
G. H.
,
Asghari-Rad
,
P.
,
Noh
,
J.
,
Rho
,
J.
,
Seo
,
M. H.
, and
Kim
,
H. S.
,
2022
, “
Novel Deep Learning Approach for Practical Applications of Indentation
,”
Mater. Today Adv.
,
13
, p.
100207
.10.1016/j.mtadv.2022.100207
274.
Xia
,
J.
,
Won
,
C.
,
Kim
,
H.
,
Lee
,
W.
, and
Yoon
,
J.
,
2022
, “
Artificial Neural Networks for Predicting Plastic Anisotropy of Sheet Metals Based on Indentation Test
,”
Materials
,
15
(
5
), p.
1714
.10.3390/ma15051714
275.
Tyulyukovskiy
,
E.
, and
Huber
,
N.
,
2006
, “
Identification of Viscoplastic Material Parameters From Spherical Indentation Data: Part I. Neural Networks
,”
J. Mater. Res.
,
21
(
3
), pp.
664
676
.10.1557/jmr.2006.0076
276.
Meng
,
X. H.
, and
Karniadakis
,
G. E.
,
2020
, “
A Composite Neural Network That Learns From Multi-Fidelity Data: Application to Function Approximation and Inverse PDE Problems
,”
J. Comput. Phys.
,
401
, p.
109020
.10.1016/j.jcp.2019.109020
277.
Bayes
,
T.
,
1763
, “
LII. An Essay Towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, FRS Communicated by Mr. Price, in a Letter to John Canton, AMFR S
,”
Philos. Trans. R. Soc. Lond.
, (
53
), pp.
370
418
.
278.
Castillo
,
A.
, and
Kalidindi
,
S. R.
,
2019
, “
A Bayesian Framework for the Estimation of the Single Crystal Elastic Parameters From Spherical Indentation Stress-Strain Measurements
,”
Front. Mater.
,
6
, p. 136.10.3389/fmats.2019.00136
279.
Wang
,
M. Z.
, and
Wu
,
J. J.
,
2019
, “
Identification of Plastic Properties of Metal Materials Using Spherical Indentation Experiment and Bayesian Model Updating Approach
,”
Int. J. Mech. Sci.
,
151
, pp.
733
745
.10.1016/j.ijmecsci.2018.12.027
280.
Zhang
,
Y.
, and
Needleman
,
A.
,
2020
, “
Influence of Assumed Strain Hardening Relation on Plastic Stress-Strain Response Identification From Conical Indentation
,”
ASME J. Eng. Mater. Technol.
,
142
(
3
), p. 031002.10.1115/1.4045852
281.
Zhang
,
Y.
, and
Needleman
,
A.
,
2021
, “
On the Identification of Power-Law Creep Parameters From Conical Indentation
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
477
(
2252
), p.
20210233
.
282.
Asgari
,
M.
,
Latifi
,
N.
,
Giovanniello
,
F.
,
Espinosa
,
H. D.
, and
Amabili
,
M.
,
2022
, “
Revealing Layer-Specific Ultrastructure and Nanomechanics of Fibrillar Collagen in Human Aorta Via Atomic Force Microscopy Testing: Implications on Tissue Mechanics at Macroscopic Scale.
,”
Adv. Nanobiomed. Res.
,
2
(
5
), p.
2100159
.10.1002/anbr.202100159
283.
Broussard
,
J. A.
,
Yang
,
R.
,
Huang
,
C.
,
Nathamgari
,
S. S. P.
,
Beese
,
A. M.
,
Godsel
,
L. M.
,
Hegazy
,
M. H.
,
Lee
,
S.
,
Zhou
,
F.
,
Sniadecki
,
N. J.
,
Green
,
K. J.
, and
Espinosa
,
H. D.
,
2017
, “
The Desmoplakin–Intermediate Filament Linkage Regulates Cell Mechanics
,”
Mol. Biol. Cell
,
28
(
23
), pp.
3156
3164
.10.1091/mbc.e16-07-0520
284.
Broussard
,
J. A.
,
Jaiganesh
,
A.
,
Zarkoob
,
H.
,
Conway
,
D. E.
,
Dunn
,
A. R.
,
Espinosa
,
H. D.
,
Janmey
,
P. A.
, and
Green
,
K. J.
,
2020
, “
Scaling Up Single-Cell Mechanics to Multicellular Tissues–The Role of the Intermediate Filament–Desmosome Network
,”
J. Cell Sci.
,
133
(
6
), p.
jcs228031
.
285.
Rajabifar
,
B.
,
Meyers
,
G. F.
,
Wagner
,
R.
, and
Raman
,
A.
,
2022
, “
Machine Learning Approach to Characterize the Adhesive and Mechanical Properties of Soft Polymers Using PeakForce Tapping AFM
,”
Macromolecules
,
55
(
19
), pp.
8731
8740
.10.1021/acs.macromol.2c00147
286.
Attard
,
P.
,
2000
, “
Interaction and Deformation of Elastic Bodies: Origin of Adhesion Hysteresis
,”
J. Phys. Chem. B
,
104
(
45
), pp.
10635
10641
.10.1021/jp0018955
287.
Nguyen
,
L. T. P.
, and
Liu
,
B. H.
,
2022
, “
Machine Learning Approach for Reducing Uncertainty in AFM Nanomechanical Measurements Through Selection of Appropriate Contact Model
,”
Eur. J. Mech. A-Solids
, 94, p.
104579
.10.1016/j.euromechsol.2022.104579
288.
Chan
,
H.
,
Cherukara
,
M.
,
Loeffler
,
T. D.
,
Narayanan
,
B.
, and
Sankaranarayanan
,
S. K. R. S.
,
2020
, “
Machine Learning Enabled Autonomous Microstructural Characterization in 3D Samples
,”
Npj Comput. Mater.
,
6
(
1
), p.
1
.10.1038/s41524-019-0267-z
289.
Bostanabad
,
R.
,
Zhang
,
Y.
,
Li
,
X.
,
Kearney
,
T.
,
Brinson
,
L. C.
,
Apley
,
D. W.
,
Liu
,
W. K.
, and
Chen
,
W.
,
2018
, “
Computational Microstructure Characterization and Reconstruction: Review of the State-of-the-Art Techniques
,”
Prog. Mater. Sci.
,
95
, pp.
1
41
.10.1016/j.pmatsci.2018.01.005
290.
Ge
,
M.
,
Su
,
F.
,
Zhao
,
Z.
, and
Su
,
D.
,
2020
, “
Deep Learning Analysis on Microscopic Imaging in Materials Science
,”
Mater. Today Nano
,
11
, p.
100087
.10.1016/j.mtnano.2020.100087
291.
Chowdhury
,
A.
,
Kautz
,
E.
,
Yener
,
B.
, and
Lewis
,
D.
,
2016
, “
Image Driven Machine Learning Methods for Microstructure Recognition
,”
Comput. Mater. Sci.
,
123
, pp.
176
187
.10.1016/j.commatsci.2016.05.034
292.
DeCost
,
B. L.
,
Lei
,
B.
,
Francis
,
T.
, and
Holm
,
E. A.
,
2019
, “
High Throughput Quantitative Metallography for Complex Microstructures Using Deep Learning: A Case Study in Ultrahigh Carbon Steel
,”
Microsc. Microanal.
,
25
(
1
), pp.
21
29
.10.1017/S1431927618015635
293.
Chen
,
Z.
, and
Daly
,
S.
,
2018
, “
Deformation Twin Identification in Magnesium Through Clustering and Computer Vision
,”
Mater. Sci. Eng. A
,
736
, pp.
61
75
.10.1016/j.msea.2018.08.083
294.
Durmaz
,
A. R.
,
Müller
,
M.
,
Lei
,
B.
,
Thomas
,
A.
,
Britz
,
D.
,
Holm
,
E. A.
,
Eberl
,
C.
,
Mücklich
,
F.
, and
Gumbsch
,
P.
,
2021
, “
A Deep Learning Approach for Complex Microstructure Inference
,”
Nat. Commun.
,
12
(
1
), p.
6272
.10.1038/s41467-021-26565-5
295.
Stuckner
,
J.
,
Harder
,
B.
, and
Smith
,
T. M.
,
2022
, “
Microstructure Segmentation With Deep Learning Encoders Pre-Trained on a Large Microscopy Dataset
,”
NPJ Comput. Mater.
,
8
(
1
), p.
200
.10.1038/s41524-022-00878-5
296.
Liu
,
Q.
,
Wu
,
H.
,
Paul
,
M. J.
,
He
,
P.
,
Peng
,
Z.
,
Gludovatz
,
B.
,
Kruzic
,
J. J.
,
Wang
,
C. H.
, and
Li
,
X.
,
2020
, “
Machine-Learning Assisted Laser Powder Bed Fusion Process Optimization for AlSi10 Mg: New Microstructure Description Indices and Fracture Mechanisms
,”
Acta Mater.
,
201
, pp.
316
328
.10.1016/j.actamat.2020.10.010
297.
Müller
,
A.
,
Karathanasopoulos
,
N.
,
Roth
,
C. C.
, and
Mohr
,
D.
,
2021
, “
Machine Learning Classifiers for Surface Crack Detection in Fracture Experiments
,”
Int. J. Mech. Sci.
,
209
, p.
106698
.10.1016/j.ijmecsci.2021.106698
298.
Hashemi
,
S.
, and
Kalidindi
,
S. R.
,
2021
, “
A Machine Learning Framework for the Temporal Evolution of Microstructure During Static Recrystallization of Polycrystalline Materials Simulated by Cellular Automaton
,”
Comput. Mater. Sci.
,
188
, p.
110132
.10.1016/j.commatsci.2020.110132
299.
Li
,
Y.
, and
Li
,
S.
,
2022
, “
Deep Learning Based Phase Transformation Model for the Prediction of Microstructure and Mechanical Properties of Hot-Stamped Parts
,”
Int. J. Mech. Sci.
,
220
, p.
107134
.10.1016/j.ijmecsci.2022.107134
300.
Alberi
,
K.
, Nardelli, M. B., Zakutayev, A., Mitas, L., Curtarolo, S., Jain, A., Fornari, M., Marzari, N., et al.,
2019
, “
The 2019 Materials by Design Roadmap
,”
J. Phys. D-Appl. Phys.
,
52
(
1
), p.
013001
.10.1088/1361-6463/aad926
301.
Zhang
,
X.
,
Vyatskikh
,
A.
,
Gao
,
H.
,
Greer
,
J. R.
, and
Li
,
X.
,
2019
, “
Lightweight, Flaw-Tolerant, and Ultrastrong Nanoarchitected Carbon
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
14
), pp.
6665
6672
.10.1073/pnas.1817309116
302.
Portela
,
C. M.
,
Vidyasagar
,
A.
,
Krödel
,
S.
,
Weissenbach
,
T.
,
Yee
,
D. W.
,
Greer
,
J. R.
, and
Kochmann
,
D. M.
,
2020
, “
Extreme Mechanical Resilience of Self-Assembled Nanolabyrinthine Materials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
11
), pp.
5686
5693
.10.1073/pnas.1916817117
303.
Portela
,
C. M.
,
Edwards
,
B. W.
,
Veysset
,
D.
,
Sun
,
Y.
,
Nelson
,
K. A.
,
Kochmann
,
D. M.
, and
Greer
,
J. R.
,
2021
, “
Supersonic Impact Resilience of Nanoarchitected Carbon
,”
Nat. Mater.
,
20
(
11
), pp.
1491
1497
.10.1038/s41563-021-01033-z
304.
Gu
,
G. X.
,
Chen
,
C.-T.
,
Richmond
,
D. J.
, and
Buehler
,
M. J.
,
2018
, “
Bioinspired Hierarchical Composite Design Using Machine Learning: Simulation, Additive Manufacturing, and Experiment
,”
Mater. Horiz.
,
5
(
5
), pp.
939
945
.10.1039/C8MH00653A
305.
Bastek
,
J.-H.
,
Kumar
,
S.
,
Telgen
,
B.
,
Glaesener
,
R. N.
, and
Kochmann
,
D. M.
,
2022
, “
Inverting the Structure-Property Map of Truss Metamaterials by Deep Learning
,”
Proc. Natl. Acad. Sci. U. S. A.
,
119
(
1
), p. e2111505119.10.1073/pnas.2111505119
306.
Wu
,
L.
,
Liu
,
L.
,
Wang
,
Y.
,
Zhai
,
Z.
,
Zhuang
,
H.
,
Krishnaraju
,
D.
,
Wang
,
Q.
, and
Jiang
,
H.
,
2020
, “
A Machine Learning -Based Method to Design Modular Metamaterials
,”
Extreme Mech. Lett.
,
36
, p.
100657
.10.1016/j.eml.2020.100657
307.
Wang
,
L.
,
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Deep Generative Modeling for Mechanistic-Based Learning and Design of Metamaterial Systems
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113377
.10.1016/j.cma.2020.113377
308.
Cecen
,
A.
,
Dai
,
H.
,
Yabansu
,
Y. C.
,
Kalidindi
,
S. R.
, and
Song
,
L.
,
2018
, “
Material Structure-Property Linkages Using Three-Dimensional Convolutional Neural Networks
,”
Acta Mater.
,
146
, pp.
76
84
.10.1016/j.actamat.2017.11.053
309.
Deng
,
B.
,
Zareei
,
A.
,
Ding
,
X.
,
Weaver
,
J. C.
,
Rycroft
,
C. H.
, and
Bertoldi
,
K.
,
2022
, “
Inverse Design of Mechanical Metamaterials With Target Nonlinear Response Via a Neural Accelerated Evolution Strategy
,”
Adv. Mater.
,
34
(
41
), p. 2206238.10.1002/adma.202206238
310.
Cheng
,
X.
,
Fan
,
Z.
,
Yao
,
S.
,
Jin
,
T.
,
Lv
,
Z.
,
Lan
,
Y.
,
Bo
,
R.
,
Chen
,
Y.
,
Zhang
,
F.
,
Shen
,
Z.
,
Wan
,
H.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2023
, “
Programming 3D Curved Mesosurfaces Using Microlattice Designs
,”
Science
,
379
(
6638
), pp.
1225
1232
.10.1126/science.adf3824
311.
Bai
,
Y.
,
Wang
,
H.
,
Xue
,
Y.
,
Pan
,
Y.
,
Kim
,
J.-T.
,
Ni
,
X.
,
Liu
,
T.-L.
,
Yang
,
Y.
,
Han
,
M.
,
Huang
,
Y.
,
Rogers
,
J. A.
, and
Ni
,
X.
,
2022
, “
A Dynamically Reprogrammable Surface With Self-Evolving Shape Morphing
,”
Nature
,
609
(
7928
), pp.
701
708
.10.1038/s41586-022-05061-w
312.
Kennedy
,
J.
,
Lim
,
C. W.
, and
Muhammad
,
2022
, “
Machine Learning and Deep Learning in Phononic Crystals and Metamaterials-A Review
,”
Mater. Today Commun.
,
33
, p.
104606
.10.1016/j.mtcomm.2022.104606
313.
Wang
,
Y.
,
Zeng
,
Q.
,
Wang
,
J.
,
Li
,
Y.
, and
Fang
,
D.
,
2022
, “
Inverse Design of Shell-Based Mechanical Metamaterial With Customized Loading Curves Based on Machine Learning and Genetic Algorithm
,”
Comput. Methods Appl. Mech. Eng.
,
401
, p.
115571
.10.1016/j.cma.2022.115571
314.
Alderete
,
N. A.
,
Medina
,
L.
,
Lamberti
,
L.
,
Sciammarella
,
C.
, and
Espinosa
,
H. D.
,
2021
, “
Programmable 3D Structures Via Kirigami Engineering and Controlled Stretching
,”
Ext. Mech. Lett.
,
43
, p.
101146
.10.1016/j.eml.2020.101146
315.
He
,
K.
, Zhang, X., Ren, S., and Su, J.,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Las Vegas, NV, June 27–30, pp.
770
778
.10.1109/CVPR.2016.90
316.
Bessa
,
M. A.
,
Glowacki
,
P.
, and
Houlder
,
M.
,
2019
, “
Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible
,”
Adv. Mater.
,
31
(
48
), p.
1904845
.10.1002/adma.201904845
317.
Gongora
,
A. E.
,
Xu
,
B.
,
Perry
,
W.
,
Okoye
,
C.
,
Riley
,
P.
,
Reyes
,
K. G.
,
Morgan
,
E. F.
, and
Brown
,
K. A.
,
2020
, “
A Bayesian Experimental Autonomous Researcher for Mechanical Design
,”
Sci. Adv.
,
6
(
15
), p.
eaaz1708
.10.1126/sciadv.aaz1708
318.
Gongora
,
A. E.
,
Snapp
,
K. L.
,
Whiting
,
E.
,
Riley
,
P.
,
Reyes
,
K. G.
,
Morgan
,
E. F.
, and
Brown
,
K. A.
,
2021
, “
Using Simulation to Accelerate Autonomous Experimentation: A Case Study Using Mechanics
,”
Iscience
,
24
(
4
), p.
102262
.10.1016/j.isci.2021.102262
319.
Stach
,
E.
,
DeCost
,
B.
,
Kusne
,
A. G.
,
Hattrick-Simpers
,
J.
,
Brown
,
K. A.
,
Reyes
,
K. G.
,
Schrier
,
J.
, et al.,
2021
, “
Autonomous Experimentation Systems for Materials Development: A Community Perspective
,”
Matter
,
4
(
9
), pp.
2702
2726
.10.1016/j.matt.2021.06.036
320.
Lew
,
A. J.
, and
Buehler
,
M. J.
,
2022
, “
DeepBuckle: Extracting Physical Behavior Directly From Empirical Observation for a Material Agnostic Approach to Analyze and Predict Buckling
,”
J. Mech. Phys. Solids
,
164
, p.
104909
.10.1016/j.jmps.2022.104909
321.
Akinwande
,
D.
,
Huyghebaert
,
C.
,
Wang
,
C.-H.
,
Serna
,
M. I.
,
Goossens
,
S.
,
Li
,
L.-J.
,
Wong
,
H.-S. P.
, and
Koppens
,
F. H. L.
,
2019
, “
Graphene and Two-Dimensional Materials for Silicon Technology
,”
Nature
,
573
(
7775
), pp.
507
518
.10.1038/s41586-019-1573-9
322.
Geim
,
A. K.
,
2009
, “
Graphene: Status and Prospects
,”
Science
,
324
(
5934
), pp.
1530
1534
.10.1126/science.1158877
323.
Dong
,
S.
,
Zhang
,
X.
,
Nathamgari
,
S. S. P.
,
Krayev
,
A.
,
Zhang
,
X.
,
Hwang
,
J. W.
,
Ajayan
,
P. M.
, and
Espinosa
,
H. D.
,
2022
, “
Facile Fabrication of 2D Material Multilayers and vdW Heterostructures With Multimodal Microscopy and AFM Characterization
,”
Mater. Today
,
52
, pp.
31
42
.10.1016/j.mattod.2022.01.002
324.
Ni
,
B.
,
Steinbach
,
D.
,
Yang
,
Z.
,
Lew
,
A.
,
Zhang
,
B.
,
Fang
,
Q.
,
Buehler
,
M. J.
, and
Lou
,
J.
,
2022
, “
Fracture at the Two-Dimensional Limit
,”
MRS Bull.
,
47
(
8
), pp.
848
862
.10.1557/s43577-022-00385-4
325.
Zhang
,
P.
,
Ma
,
L.
,
Fan
,
F.
,
Zeng
,
Z.
,
Peng
,
C.
,
Loya
,
P. E.
,
Liu
,
Z.
,
Gong
,
Y.
,
Zhang
,
J.
,
Zhang
,
X.
,
Ajayan
,
P. M.
,
Zhu
,
T.
, and
Lou
,
J.
,
2014
, “
Fracture Toughness of Graphene
,”
Nat. Commun.
,
5
(
1
), p. 3782.10.1038/ncomms4782
326.
Jiang
,
J. W.
,
Park
,
H. S.
, and
Rabczuk
,
T.
,
2013
, “
Molecular Dynamics Simulations of Single-Layer Molybdenum Disulphide (MoS2): Stillinger-Weber Parametrization, Mechanical Properties, and Thermal Conductivity
,”
J. Appl. Phys.
,
114
(
6
), p. 064307.10.1063/1.4818414
327.
Ostadhossein
,
A.
,
Rahnamoun
,
A.
,
Wang
,
Y.
,
Zhao
,
P.
,
Zhang
,
S.
,
Crespi
,
V. H.
, and
van Duin
,
A. C. T.
,
2017
, “
ReaxFF Reactive Force-Field Study of Molybdenum Disulfide (MoS2)
,”
J. Phys. Chem. Lett.
,
8
(
3
), pp.
631
640
.10.1021/acs.jpclett.6b02902
328.
Wen
,
M.
,
Shirodkar
,
S. N.
,
Plecháč
,
P.
,
Kaxiras
,
E.
,
Elliott
,
R. S.
, and
Tadmor
,
E. B.
,
2017
, “
A Force-Matching Stillinger-Weber Potential for MoS2: Parameterization and Fisher Information Theory Based Sensitivity Analysis
,”
J. Appl. Phys.
,
122
(
24
), p.
244301
.10.1063/1.5007842
329.
Botu
,
V.
,
Batra
,
R.
,
Chapman
,
J.
, and
Ramprasad
,
R.
,
2017
, “
Machine Learning Force Fields: Construction, Validation, and Outlook
,”
J. Phys. Chem. C
,
121
(
1
), pp.
511
522
.10.1021/acs.jpcc.6b10908
330.
Li
,
Y.
,
Li
,
H.
,
Pickard
,
F. C.
,
Narayanan
,
B.
,
Sen
,
F. G.
,
Chan
,
M. K. Y.
,
Sankaranarayanan
,
S. K. R. S.
,
Brooks
,
B. R.
, and
Roux
,
B.
,
2017
, “
Machine Learning Force Field Parameters From Ab Initio Data
,”
J. Chem. Theory Comput.
,
13
(
9
), pp.
4492
4503
.10.1021/acs.jctc.7b00521
331.
Shorten
,
C.
, and
Khoshgoftaar
,
T. M.
,
2019
, “
A Survey on Image Data Augmentation for Deep Learning
,”
J. Big Data
,
6
(
1
), pp.
1
48
.10.1186/s40537-019-0197-0
332.
Abadi
,
M.
, Agarwal, A., Barham, P., Brevdo, E, Chen, Z., Citro, G., Corrado, G. S., et al.,
2016
, “
Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
,” arXiv Preprint
arXiv:1603.04467
.10.48550/arXiv.1603.04467
333.
Paszke
,
A.
, Gross, M., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., et al.,
2019
, “
Pytorch: An Imperative Style, High-Performance Deep Learning Library
,”
Adv. Neural Inform. Process. Syst.
,
32
, pp.
8026
8037
.https://dl.acm.org/doi/10.5555/3454287.3455008
334.
Bradbury
,
J.
, et al.,
2018
, “
JAX: Composable Transformations of Python+ NumPy Programs
,”.
335.
Kohavi
,
R.
,
1995
, “
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
,”
Ijcai
, Montreal, QC, Canada.
336.
Ngiam
,
J.
, Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. Y.,
2011
, “
Multimodal Deep Learning
,” Proceedings of the 28th International Conference on Machine Learning (
ICML-11
), Bellevue, WA, pp.
689
696
.https://people.csail.mit.edu/khosla/papers/icml2011_ngiam.pdf
337.
Trask
,
N.
, Martinez, C., Lee, K., and Boyce, B.,
2022
, “
Unsupervised Physics-Informed Disentanglement of Multimodal Data for High-Throughput Scientific Discovery
,” arXiv Preprint
arXiv:2202.03242
.10.48550/arXiv.2202.03242
338.
Smith
,
R. C.
,
2013
,
Uncertainty Quantification: Theory, Implementation, and Applications
, Vol.
12
,
Siam
, Philadelphia, PA.
339.
Abdar
,
M.
,
Pourpanah
,
F.
,
Hussain
,
S.
,
Rezazadegan
,
D.
,
Liu
,
L.
,
Ghavamzadeh
,
M.
,
Fieguth
,
P.
,
Cao
,
X.
,
Khosravi
,
A.
,
Acharya
,
U. R.
,
Makarenkov
,
V.
, and
Nahavandi
,
S.
,
2021
, “
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
,”
Inf. Fusion
,
76
, pp.
243
297
.10.1016/j.inffus.2021.05.008
340.
Soize
,
C.
,
2017
,
Uncertainty Quantification
,
Springer
, New York.
341.
Sullivan
,
T. J.
,
2015
,
Introduction to Uncertainty Quantification
, Vol.
63
,
Springer
, New York.
342.
Cicci
,
L.
, Fresca, S., Guo, M., Manzoni, A., and Zunino, P.,
2023
, “
Uncertainty Quantification for Nonlinear Solid Mechanics Using Reduced Order Models With Gaussian Process Regression
,” arXiv Preprint
arXiv:2302.08216
.10.48550/arXiv.2302.08216
343.
Liang
,
M.
,
Chang
,
Z.
,
Wan
,
Z.
,
Gan
,
Y.
,
Schlangen
,
E.
, and
Šavija
,
B.
,
2022
, “
Interpretable Ensemble-Machine-Learning Models for Predicting Creep Behavior of Concrete
,”
Cem. Concrete Compos.
,
125
, p.
104295
.10.1016/j.cemconcomp.2021.104295
344.
de Oca Zapiain
,
D. M.
, et al.,
2022
, “
Predicting Plastic Anisotropy Using Crystal Plasticity and Bayesian Neural Network Surrogate Models.
,”
Mater. Sci. Eng. A
,
833
, p.
142472
.10.1016/j.msea.2021.142472
345.
Pyrialakos
,
S.
,
Kalogeris
,
I.
,
Sotiropoulos
,
G.
, and
Papadopoulos
,
V.
,
2021
, “
A Neural Network-Aided Bayesian Identification Framework for Multiscale Modeling of Nanocomposites
,”
Comput. Methods Appl. Mech. Eng.
,
384
, p.
113937
.10.1016/j.cma.2021.113937
346.
Nguyen
,
M. S. T.
, and
Kim
,
S.-E.
,
2021
, “
A Hybrid Machine Learning Approach in Prediction and Uncertainty Quantification of Ultimate Compressive Strength of RCFST Columns
,”
Const. Build. Mater.
,
302
, p.
124208
.10.1016/j.conbuildmat.2021.124208
347.
Huang
,
T.
,
Liu
,
Z.
,
Wu
,
C. T.
, and
Chen
,
W.
,
2022
, “
Microstructure-Guided Deep Material Network for Rapid Nonlinear Material Modeling and Uncertainty Quantification
,”
Comput. Methods Appl. Mech. Eng.
,
398
, p.
115197
.10.1016/j.cma.2022.115197
348.
Huang
,
D. Z.
,
Xu
,
K.
,
Farhat
,
C.
, and
Darve
,
E.
,
2020
, “
Learning Constitutive Relations From Indirect Observations Using Deep Neural Networks
,”
J. Comput. Phys.
,
416
, p.
109491
.10.1016/j.jcp.2020.109491
349.
Ravindran
,
S.
, Gandhi, V., Joshi, A., and Ravichandran, G.,
2022
, “
Three Dimensional Full-Field Velocity Measurements in Shock Compression Experiments Using Stereo Digital Image Correlation
,” arXiv Preprint
arXiv:2210.12568
.10.1063/5.0131590
350.
Saccone
,
M. A.
,
Gallivan
,
R. A.
,
Narita
,
K.
,
Yee
,
D. W.
, and
Greer
,
J. R.
,
2022
, “
Additive Manufacturing of Micro-Architected Metals Via Hydrogel Infusion
,”
Nature
,
612
(
7941
), pp.
685
690
.10.1038/s41586-022-05433-2
351.
Kagias
,
M.
, Lee, S., Friedman, A. C., Zheng, T., Veysset, D., Faraon, A., and Greer, J. R., “
Metasurface‐Enabled Holographic Lithography for Impact‐Absorbing Nano‐Architected Sheets
,”
Adv. Mater.
, 35(13), p.
2209153
.10.1002/adma.202209153
You do not currently have access to this content.