0
Research Papers: Experimental Techniques

A High Temperature Instrument for Consecutive Measurements of Thermal Conductivity, Electrical Conductivity, and Seebeck Coefficient

[+] Author and Article Information
Sajad Yazdani, Hyun-Young Kim

Department of Mechanical Engineering,
University of Connecticut,
Storrs, CT 06269

Michael Thompson Pettes

Department of Mechanical Engineering,
University of Connecticut,
Storrs, CT 06269;
Materials Physics and Applications Division,
Center for Integrated Nanotechnologies (CINT),
Los Alamos National Laboratory,
Los Alamos, NM 87545
e-mail: pettesmt@lanl.gov

1Sajad Yazdani and Hyun-Young Kim both contributed equally.

2Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received August 10, 2018; final manuscript received April 9, 2019; published online May 17, 2019. Assoc. Editor: Ali Khounsary.

J. Heat Transfer 141(7), 071602 (May 17, 2019) (12 pages) Paper No: HT-18-1520; doi: 10.1115/1.4043572 History: Received August 10, 2018; Revised April 09, 2019

A device for measuring a plurality of material properties is designed to include accurate sensors configured to consecutively obtain thermal conductivity, electrical conductivity, and Seebeck coefficient of a single sample while maintaining a vacuum or inert gas environment. Four major design factors are identified as sample-heat spreader mismatch, radiation losses, parasitic losses, and sample surface temperature variance. The design is analyzed using finite element methods for high temperature ranges up to 1000 °C as well as ultra-high temperatures up to 2500 °C. A temperature uncertainty of 0.46% was estimated for a sample with cold and hot sides at 905.1 and 908.5 °C, respectively. The uncertainty at 1000 °C was calculated to be 0.7% for a ΔT of 5 °C between the hot and cold sides. The thermal conductivity uncertainty was calculated to be −8.6% at ∼900 °C for a case with radiative gains, and +8.2% at ∼1000 °C for a case with radiative losses, indicating the sensitivity of the measurement to the temperature of the thermal guard in relation to the heat spreader and sample temperature. Lower limits of −17 and −13% error in thermal conductivity measurements were estimated at the ultra-high temperature of ∼2500 °C for a single-stage and double-stage radiation shield, respectively. It is noted that this design is not limited to electro-thermal characterization and will enable measurement of ionic conductivity and surface temperatures of energy materials under realistic operating conditions in extreme temperature environments.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yazdani, S. , and Pettes, M. T. , 2018, “ Nanoscale Self-Assembly of Thermoelectric Materials: A Review of Chemistry-Based Approaches,” Nanotechnology, 29(43), p. 432001. [CrossRef] [PubMed]
Pettes, M. T. , Kim, J. , Wu, W. , Bustillo, K. C. , and Shi, L. , 2016, “ Thermoelectric Transport in Surface- and Antimony-Doped Bismuth Telluride Nanoplates,” APL Mater., 4(10), p. 104810. [CrossRef]
Zhang, Q. H. , Huang, X. Y. , Bai, S. Q. , Shi, X. , Uher, C. , and Chen, L. D. , 2016, “ Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges,” Adv. Eng. Mater., 18(2), pp. 194–213. [CrossRef]
He, J. , and Tritt, T. M. , 2017, “ Advances in Thermoelectric Materials Research: Looking Back and Moving Forward,” Science, 357(6358), p. 1369. [CrossRef]
Chen, R. , Lee, J. , Lee, W. , and Li, D. , 2019, “ Thermoelectrics of Nanowires,” Chem. Rev. (epub).
Li, Y. , Liu, M. , Liu, K. , and Wang, C.-A. , 2013, “ High Li+ Conduction in Nasicon-Type Li1+xYxZr2-x(PO4)3 at Room Temperature,” J. Power Sources, 240(1), pp. 50–53. [CrossRef]
Li, Y. , Zhou, W. , Chen, X. , Lü, X. , Cui, Z. , Xin, S. , Xue, L. , Jia, Q. , and Goodenough, J. B. , 2016, “ Mastering the Interface for Advanced All-Solid-State Lithium Rechargeable Batteries,” Proc. Natl. Acad. Sci. U. S. A., 113(47), pp. 13313–13317. [CrossRef] [PubMed]
Yazdani, S. , Kashfi-Sadabad, R. , Palmieri, A. , Mustain, W. E. , and Pettes, M. T. , 2017, “ Effect of Cobalt Alloying on the Electrochemical Performance of Manganese Oxide Nanoparticles Nucleated on Multiwalled Carbon Nanotubes,” Nanotechnology, 28(15), p. 155403. [CrossRef] [PubMed]
Wu, W. , Morales-Acosta, M. D. , Wang, Y. , and Pettes, M. T. , 2019, “ Isotope Effect in Bilayer WSe2,” Nano Lett., 19(3), pp. 1527–1533. [CrossRef] [PubMed]
Pettes, M. T. , Ji, H. X. , Sadeghi, M. M. , Jo, I. , Wu, W. , Ruoff, R. S. , and Shi, L. , 2015, “ Scattering of Phonons by High-Concentration Isotopic Impurities in Ultrathin Graphite,” Phys. Rev. B, 91(3), p. 035429. [CrossRef]
Vuong, T. Q. P. , Liu, S. , Van Der Lee, A. , Cuscó, R. , Artús, L. , Michel, T. , Valvin, P. , Edgar, J. H. , Cassabois, G. , and Gil, B. , 2018, “ Isotope Engineering of Van Der Waals Interactions in Hexagonal Boron Nitride,” Nat. Mater., 17(2), pp. 152–158. [CrossRef] [PubMed]
Cuscó, R. , Artús, L. , Edgar, J. H. , Liu, S. , Cassabois, G. , and Gil, B. , 2018, “ Isotopic Effects on Phonon Anharmonicity in Layered Van Der Waals Crystals: Isotopically Pure Hexagonal Boron Nitride,” Phys. Rev. B, 97(15), p. 155435. [CrossRef]
Li, X. , Zhang, J. , Puretzky, A. A. , Yoshimura, A. , Sang, X. , Cui, Q. , Li, Y. , Liang, L. , Ghosh, A. W. , Zhao, H. , Unocic, R. R. , Meunier, V. , Rouleau, C. M. , Sumpter, B. G. , Geohegan, D. B. , and Xiao, K. , 2019, “ Isotope-Engineering the Thermal Conductivity of Two-Dimensional MoS2,” ACS Nano, 13(2), pp. 2481–2489. [PubMed]
Lindsay, L. , Broido, D. A. , and Reinecke, T. L. , 2012, “ Thermal Conductivity and Large Isotope Effect in GaN From First Principles,” Phys. Rev. Lett., 109(9), p. 095901. [CrossRef] [PubMed]
Lowhorn, N. D. , Wong-Ng, W. , Zhang, W. , Lu, Z. Q. , Otani, M. , Thomas, E. , Green, M. , Tran, T. N. , Dilley, N. , Ghamaty, S. , Elsner, N. , Hogan, T. , Downey, A. D. , Jie, Q. , Li, Q. , Obara, H. , Sharp, J. , Caylor, C. , Venkatasubramanian, R. , Willigan, R. , Yang, J. , Martin, J. , Nolas, G. , Edwards, B. , and Tritt, T. , 2009, “ Round-Robin Measurements of Two Candidate Materials for a Seebeck Coefficient Standard Reference Material™,” Appl. Phys. A, 94(2), pp. 231–234. [CrossRef]
Wang, H. , Mccarty, R. , Salvador, J. R. , Yamamoto, A. , and König, J. , 2014, “ Determination of Thermoelectric Module Efficiency: A Survey,” J. Electron. Mater., 43(6), pp. 2274–2286. [CrossRef]
Wang, H. , Porter, W. D. , Böttner, H. , König, J. , Chen, L. , Bai, S. , Tritt, T. M. , Mayolet, A. , Senawiratne, J. , Smith, C. , Harris, F. , Gilbert, P. , Sharp, J. W. , Lo, J. , Kleinke, H. , and Kiss, L. , 2013, “ Transport Properties of Bulk Thermoelectrics—An International Round-Robin Study—Part I: Seebeck Coefficient and Electrical Resistivity,” J. Electron. Mater., 42(4), pp. 654–664. [CrossRef]
Snyder, G. J. , and Toberer, E. S. , 2008, “ Complex Thermoelectric Materials,” Nat. Mater., 7(2), pp. 105–114. [CrossRef] [PubMed]
Kraemer, D. , Jie, Q. , Mcenaney, K. , Cao, F. , Liu, W. , Weinstein, L. A. , Loomis, J. , Ren, Z. , and Chen, G. , 2016, “ Concentrating Solar Thermoelectric Generators With a Peak Efficiency of 7.4%,” Nat. Energy, 1(11), p. 16153. [CrossRef]
Elson, A. , Tidball, R. , and Hampson, A. , 2015, Waste Heat to Power Market Assessment, ICF International, Fairfax, VA.
Kim, H. S. , Liu, W. , Chen, G. , Chu, C.-W. , and Ren, Z. , 2015, “ Relationship Between Thermoelectric Figure of Merit and Energy Conversion Efficiency,” Proc. Natl. Acad. Sci. U. S. A., 112(27), pp. 8205–8210. [CrossRef] [PubMed]
Wang, H. , Bai, S. , Chen, L. , Cuenat, A. , Joshi, G. , Kleinke, H. , König, J. , Lee, H. W. , Martin, J. , Oh, M.-W. , Porter, W. D. , Ren, Z. , Salvador, J. , Sharp, J. , Taylor, P. , Thompson, A. J. , and Tseng, Y. C. , 2015, “ International Round-Robin Study of the Thermoelectric Transport Properties of an n-Type Half-Heusler Compound From 300 K to 773 K,” J. Electron. Mater., 44(11), pp. 4482–4491. [CrossRef]
Van Der Pauw, L. J. , 1958, “ A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape,” Philips Tech. Rev., 20(8), pp. 220–224.
García-Cañadas, J. , and Min, G. , 2014, “ Multifunctional Probes for High-Throughput Measurement of Seebeck Coefficient and Electrical Conductivity at Room Temperature,” Rev. Sci. Instrum., 85(4), p. 043906. [CrossRef] [PubMed]
He, X. , Yang, J. , Jiang, Q. , Luo, Y. , Zhang, D. , Zhou, Z. , Ren, Y. , Li, X. , Xin, J. , and Hou, J. , 2016, “ A New Method for Simultaneous Measurement of Seebeck Coefficient and Resistivity,” Rev. Sci. Instrum., 87(12), p. 124901. [CrossRef] [PubMed]
Kraemer, D. , and Chen, G. , 2014, “ High-Accuracy Direct ZT and Intrinsic Properties Measurement of Thermoelectric Couple Devices,” Rev. Sci. Instrum., 85(4), p. 045107. [CrossRef] [PubMed]
Mackey, J. , Dynys, F. , and Sehirlioglu, A. , 2014, “ Uncertainty Analysis for Common Seebeck and Electrical Resistivity Measurement Systems,” Rev. Sci. Instrum., 85(8), p. 085119. [CrossRef] [PubMed]
Iwanaga, S. , Toberer, E. S. , Lalonde, A. , and Snyder, G. J. , 2011, “ A High Temperature Apparatus for Measurement of the Seebeck Coefficient,” Rev. Sci. Instrum., 82(6), p. 063905. [CrossRef] [PubMed]
Snyder, G. J. , 2015, “ Measuring Seebeck Coefficient,” U. S. Patent No. 9,140,612 B2.
Yazdani, S. , Kim, H.-Y. , and Pettes, M. T. , 2018, “ Uncertainty Analysis of Axial Temperature and Seebeck Coefficient Measurements,” Rev. Sci. Instrum., 89(8), p. 084903. [CrossRef] [PubMed]
Touloukian, Y. S. , and Ho, C. Y. , 1970, Thermophysical Properties of Matter, IFI/Plenum, New York.
Pollock, M., 2002, “ GRAFOIL® Flexible Graphite Engineering Design Manual,” NeoGraf Solutions LLC, Cleveland, OH, Accessed Dec. 15, 2015, https://neograf.com/wp-content/uploads/NGS_GrafoilEngineeringDesignManual.pdf
Bergman, T. L. , Lavine, A. S. , Incropera, F. P. , and Dewitt, D. P. , 2011, Fundamentals of Heat and Mass Transfer, Wiley, New York.

Figures

Grahic Jump Location
Fig. 2

(a) Schematic of the high temperature electro-thermal characterization apparatus showing axial thermocouples, heated radiation shield, and actively cooled heat sink. ((b) and (c)) Detail of the enabling design components. (d) A detailed top view of the instrument top heat spreader.

Grahic Jump Location
Fig. 1

Overview of current electro-thermal property characterization methods in comparison with the approach proposed here. The properties that must be obtained to quantify device efficiency for thermal-to-electrical energy interconversion are the electrical conductivity (σ), thermal conductivity (κ), and Seebeck coefficient (S).

Grahic Jump Location
Fig. 3

The heat flux through the sample for average temperatures of (a) T = 300 °C and (b) T = 1000 °C

Grahic Jump Location
Fig. 4

(a) Temperature distribution across the instrument with the radiation shield temperature set at 909 °C. The upper surface boundary condition was set as thermally insulating and the lower surface was kept at 22 °C. (b) Detail of the temperature distribution across the outer surface of the top heat spreader with a maximum variation of 0.45 °C.

Grahic Jump Location
Fig. 7

Temperature distribution across (a) the hot surface of the 12.7 mm diameter, 5 mm thick boron nitride sample and (b) the cold surface of the sample. The radiation shield upper and lower half setpoints were 2502 and 2490 °C, respectively. (c) Temperature variation across the radial direction on the sample for hot and cold sides illustrates a maximum variation of less than 0.23 °C above the center point temperature where the thermocouple contacts the sample. (d) Instrument temperature distribution.

Grahic Jump Location
Fig. 5

Temperature distribution for a pyroceram 9606 sample with a thermal conductivity of ∼2.9 W m−1 K−1 at 907 °C. (a) Hot side, (b) cold side, (c) isometric view, and (d) sample surface temperature variation along the radial direction exhibit a maximum value less than 0.01 °C above the center point temperature where the thermocouple contacts the sample.

Grahic Jump Location
Fig. 6

Temperature distribution across the (a) top and (b) bottom thermocouples

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In