0
Research Papers: Radiative Heat Transfer

Ultrafast Tunable Near-Field Radiative Thermal Modulator Made of Ge3Sb2Te6

[+] Author and Article Information
Lu Lu, Jinlin Song, Zixue Luo

State Key Laboratory of Coal Combustion,
Huazhong University of
Science and Technology,
Wuhan, Hubei 430074, China;
Shenzhen Huazhong University of Science and
Technology Research Institute,
Shenzhen, Guangdong 518057, China

Kun Zhou, Han Ou

State Key Laboratory of Coal Combustion,
Huazhong University of
Science and Technology,
Wuhan, Hubei 430074, China;
Shenzhen Huazhong University of
Science and Technology Research Institute,
Shenzhen, Guangdong 518057, China

Qiang Cheng

State Key Laboratory of Coal Combustion,
Huazhong University of
Science and Technology,
Wuhan, Hubei 430074, China;
Shenzhen Huazhong University of
Science and Technology Research Institute,
Shenzhen, Guangdong 518057, China
e-mail: chengqiang@mail.hust.edu.cn

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received August 17, 2018; final manuscript received April 10, 2019; published online May 14, 2019. Assoc. Editor: Gennady Ziskind.

J. Heat Transfer 141(7), 072701 (May 14, 2019) (8 pages) Paper No: HT-18-1534; doi: 10.1115/1.4043573 History: Received August 17, 2018; Revised April 10, 2019

We show numerically the phase change material Ge3Sb2Te6 (GST) with special configuration as a heat modulator in the regime of near-field radiative heat transfer (NFRHT). The ability of GST to allow ultrafast reversible switch between two phases endows it great potential in practical modulation application. By designing silicon carbide (SiC) nanoholes (NHs) filled with GST, this configuration could achieve a considerable modulation effect and large near-field radiative heat flux. The underlying mechanism can be explained by the observation that the entire configuration supports either hyperbolic modes or surface phonon polaritons (SPhPs) resonance modes and even the combination of both modes, thereby resulting in the remarkable modulation effect. In addition, the effects of the volume filling factor and graphene coverage are also investigated at the vacuum gap distance of 100 nm. With graphene coverage, the modulation factor can be further improved to as high as 0.72 achieved at the volume filling factor of 0.6 with temperature difference of 20 K. The proposed configuration has the potential to effectively modulate heat in the near-field regime for designing heat modulation applications in the future.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Shrader, T. M. , 1937, “ Heat Regulator,” U.S. Patent No. 50831.
Li, B. , Wang, L. , and Casati, G. , 2004, “ Thermal Diode: Rectification of Heat Flux,” Phys. Rev. Lett., 93(18), p. 184301. [CrossRef] [PubMed]
Terraneo, M. , Peyrard, M. , and Casati, G. , 2002, “ Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier,” Phys. Rev. Lett., 88(9), pp. 289–295. [CrossRef]
Li, B. , Wang, L. , and Casati, G. , 2006, “ Negative Differential Thermal Resistance and Thermal Transistor,” Appl. Phys. Lett., 88(14), p. 230.
Li, N. , Ren, J. , Wang, L. , Zhang, G. , Hänggi, P. , and Li, B. , 2012, “ Colloquium: Phononics: Manipulating Heat Flow with Electronic Analogs and Beyond,” Rev. Mod. Phys., 84(3), p. 1045. [CrossRef]
Ben-Abdallah, P. , and Biehs, S. A. , 2014, “ Near-Field Thermal Transistor,” Phys. Rev. Lett., 112(4), p. 044301. [CrossRef] [PubMed]
Ito, K. , Nishikawa, K. , Iizuka, H. , and Toshiyoshi, H. , 2014, “ Experimental Investigation of Radiative Thermal Rectifier Using Vanadium Dioxide,” Appl. Phys. Lett., 105(25), p. 253503. [CrossRef]
Chang, C. W. , Okawa, D. , Majumdar, A. , and Zettl, A. , 2006, “ Solid-State Thermal Rectifier,” Science, 314(5802), pp. 1121–1124. [CrossRef] [PubMed]
Zhu, J. , Hippalgaonkar, K. , Shen, S. , Wang, K. , Abate, Y. , Lee, S. , Wu, J. , Yin, X. , Majumdar, A. , and Zhang, X. , 2014, “ Temperature-Gated Thermal Rectifier for Active Heat Flow Control,” Nano Lett., 14(8), pp. 4867–4872. [CrossRef] [PubMed]
Otey, C. R. , Lau, W. T. , and Fan, S. , 2010, “ Thermal Rectification Through Vacuum,” Phys. Rev. Lett., 104(15), p. 154301. [CrossRef] [PubMed]
Shen, S. , Narayanaswamy, A. , and Chen, G. , 2009, “ Surface Phonon Polaritons Mediated Energy Transfer Between Nanoscale Gaps,” Nano Lett., 9(8), pp. 2909–2913. [CrossRef] [PubMed]
Ilic, O. , Jablan, M. , Joannopoulos, J. D. , Celanovic, I. , Buljan, H. , and Soljačić, M. , 2012, “ Near-Field Thermal Radiation Transfer Controlled by Plasmons in Graphene,” Phys. Rev. B: Condens. Matter Mater. Phys., 85(15), pp. 5299–5303. [CrossRef]
Lee, B. J. , Lim, M. , and Lee, S. S. , 2013, “ Near-Field Thermal Radiation Between Graphene-Covered Doped Silicon Plates,” Opt. Express, 21(19), pp. 22173–22185. [CrossRef] [PubMed]
Basu, S. , and Francoeur, M. , 2011, “ Near-Field Radiative Transfer Based Thermal Rectification Using Doped Silicon,” Appl. Phys. Lett., 98(11), p. 184301. [CrossRef]
Cui, L. , Huang, Y. , Wang, J. , and Zhu, K. Y. , 2013, “ Ultrafast Modulation of Near-Field Heat Transfer With Tunable Metamaterials,” Appl. Phys. Lett., 102(5), p. 3303. [CrossRef]
Yang, Y. , Basu, S. , and Wang, L. , 2015, “ Vacuum Thermal Switch Made of Phase Transition Materials Considering Thin Film and Substrate Effects,” J. Quant. Spectrosc. Radiat. Transfer, 158, pp. 69–77. [CrossRef]
Zwol, P. J. V. , Joulain, K. , Ben-Abdallah, P. , and Chevrier, J. , 2011, “ Phonon Polaritons Enhance Near-Field Thermal Transfer Across the Phase Transition of VO2,” Phys. Rev. B, 84(16), p. 161413. [CrossRef]
Van Zwol, P. J. , Joulain, K. , Ben Abdallah, P. , Greffet, J. J. , and Chevrier, J. , 2015, “ Fast Nanoscale Heat-Flux Modulation With Phase-Change Materials,” Phys. Rev. B, 83(20), p. 201404. [CrossRef]
Ghanekar, A. , Ji, J. , and Zheng, Y. , 2016, “ High-Rectification Near-Field Thermal Diode Using Phase Change Periodic Nanostructure,” Appl. Phys. Lett., 109(12), p. 123106. [CrossRef]
Barker , A. S., Jr. , Verleur, H. W. , and Guggenheim, H. J. , 1966, “ Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett., 17(26), pp. 1286–1289. [CrossRef]
Michel, A. K. U. , Zalden, P. , Chigrin, D. N. , Wuttig, M. , Lindenberg, A. M. , and Taubner, T. , 2014, “ Reversible Optical Switching of Infrared Antenna Resonances With Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses,” ACS Photonics, 1(9), pp. 833–839. [CrossRef]
Li, P. , Yang, X. , Maß, T. W. , Hanss, J. , Lewin, M. , Michel, A. U. , Wuttig, M. , and Taubner, T. , 2016, “ Reversible Optical Switching of Highly Confined Phonon-Polaritons With an Ultrathin Phase-Change Material,” Nat. Mater., 14(15), p. 1450.
Shportko, K. , Kremers, S. , Woda, M. , Lencer, D. , Robertson, J. , and Wuttig, M. , 2008, “ Resonant Bonding in Crystalline Phase-Change Materials,” Nat. Mater., 7(8), pp. 653–658. [CrossRef] [PubMed]
Michel, A. K. , Chigrin, D. N. , Maß, T. W. , Schönauer, K. , Salinga, M. , Wuttig, M. , and Taubner, T. , 2013, “ Using Low-Loss Phase-Change Materials for Mid-Infrared Antenna Resonance Tuning,” Nano Lett., 13(8), p. 3470. [CrossRef] [PubMed]
Loke, D. , Lee, T. , Wang, W. , Shi, L. , Zhao, R. , Yeo, Y. , Chong, T. , and Elliott, S. , 2012, “ Breaking the Speed Limits of Phase-Change Memory,” Science, 336(6088), pp. 1566–1569. [CrossRef] [PubMed]
Cortes, C. L. , Newman, W. , Molesky, S. , and Jacob, Z. , 2012, “ Quantum Nanophotonics Using Hyperbolic Metamaterials,” J. Opt., 14(6), pp. 1013–1020. [CrossRef]
Xie, R. , Bui, C. T. , Varghese, B. , Zhang, Q. , Sow, C. H. , Li, B. , and Thong, J. T. , 2011, “ An Electrically Tuned Solid‐State Thermal Memory Based on Metal–Insulator Transition of Single-Crystalline VO2 Nanobeams,” Adv. Funct. Mater., 21(9), pp. 1602–1607. [CrossRef]
Liu, X. L. , Zhang, R. Z. , and Zhang, Z. M. , 2014, “ Near-Field Radiative Heat Transfer With Doped-Silicon Nanostructured Metamaterials,” Int. J. Heat Mass Transfer, 73, pp. 389–398. [CrossRef]
Zhou, K. , Cheng, Q. , Song, J. , Lu, L. , Jia, Z. , and Li, J. , 2018, “ Broadband Perfect Infrared Absorption by Tuning Epsilon-Near-Zero and Epsilon-Near-Pole Resonances of Multilayer ITO Nanowires,” Appl. Opt., 57(1), pp. 102–111. [CrossRef] [PubMed]
Choy, T. C. , 2015, Effective Medium Theory: Principles and Applications, Oxford University Press, Oxford, UK.
Wang, H. , Liu, X. L. , Wang, L. P. , and Zhang, Z. M. , 2013, “ Anisotropic Optical Properties of Silicon Nanowire Arrays Based on the Effective Medium Approximation,” Int. J. Therm. Sci., 65(6), pp. 62–69. [CrossRef]
Liu, X. , Bright, T. , and Zhang, Z. , 2014, “ Application Conditions of Effective Medium Theory in Near-Field Radiative Heat Transfer Between Multilayered Metamaterials,” ASME J. Heat Transfer, 136(9), p. 092703. [CrossRef]
Gall, J. L. , Olivier, M. , and Greffet, J. J. , 1997, “ Experimental and Theoretical Study of Reflection and Coherent Thermal Emission by a SiC Grating Supporting a Surface-Phonon Polariton,” Phys. Rev. B, 55(15), pp. 10105–10114. [CrossRef]
Hu, L. , and Chui, S. T. , 2002, “ Characteristics of Electromagnetic Wave Propagation in Uniaxially Anisotropic Left-Handed Materials,” Phys. Rev. B, 66(8), pp. 429–436. [CrossRef]
Song, J. , Lu, L. , Cheng, Q. , and Luo, Z. , 2018, “ Three-Body Heat Transfer Between Anisotropic Magneto-Dielectric Hyperbolic Metamaterials,” ASME J. Heat Transfer, 140(8), p. 082005. [CrossRef]
Volokitin, A. I. , and Persson, B. N. J. , 2007, “ Near-Field Radiative Heat Transfer and Noncontact Friction,” Rev. Mod. Phys., 79(4), pp. 1291–1329. [CrossRef]
Biehs, S.-A. , Tschikin, M. , and Ben-Abdallah, P. , 2012, “ Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field,” Phys. Rev. Lett., 109(10), p. 104301. [CrossRef] [PubMed]
Fu, C. J. , and Zhang, Z. M. , 2006, “ Nanoscale Radiation Heat Transfer for Silicon at Different Doping Levels,” Int. J. Heat Mass Transfer, 49(9), pp. 1703–1718. [CrossRef]
Biehs, S. A. , Ben-Abdallah, P. , Rosa, F. S. , Joulain, K. , and Greffet, J. J. , 2011, “ Nanoscale Heat Flux Between Nanoporous Materials,” Opt. Exp., 19(S5), p. A1088. [CrossRef]
Song, J. , and Cheng, Q. , 2016, “ Near-Field Radiative Heat Transfer Between Graphene and Anisotropic Magneto-Dielectric Hyperbolic Metamaterials,” Phys. Rev. B, 94(12), p. 125419. [CrossRef]
Zhao, B. , and Zhang, Z. , 2016, “ Enhanced Photon Tunneling by Surface Plasmon–Phonon Polaritons in Graphene/hBN Heterostructures,” ASME J. Heat Transfer, 139(2), p. 022701. [CrossRef]
Messina, R. , and Ben-Abdallah, P. , 2013, “ Graphene-Based Photovoltaic Cells for Near-Field Thermal Energy Conversion,” Sci. Rep., 3(3), p. 1383. [CrossRef] [PubMed]
Liu, X. , Zhang, R. Z. , and Zhang, Z. , 2014, “ Near-Perfect Photon Tunneling by Hybridizing Graphene Plasmons and Hyperbolic Modes,” ACS Photonics, 1(9), pp. 785–789. [CrossRef]
Yang, J. , Su, Y. , Fu, Y. , Gong, S. , Du, W. , He, S. , and Ma, Y. , 2018, “ Observing of the Super-Planckian Near-Field Thermal Radiation Between Graphene Sheets,” Nat commun., 9(1), p. 4033. [PubMed]
Zhu, L. , Fiorino, A. , Thompson, D. , Mittapally, R. , Meyhofer, E. , and Reddy, P. , 2019, “ Near-Field Photonic Cooling Through Control of the Chemical Potential of Photons,” Nature, 566(7743), p. 239. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Schematic illustration of the two semi-infinite GST-filled SiC NHs separated by a vacuum gap at distance of d with different temperatures T1 and T2, and GST in both sides can be at amorphous (a-GST) or crystalline (c-GST) state, while red represents hot temperature and blue represents cold temperature

Grahic Jump Location
Fig. 2

Curve plots of the real part of the permittivity tensor ε̂ with f=0.3. The left rectangular areas represent the hyperbolic regions with the ordinary component εO>0 and extraordinary component εE<0, while the right rectangular areas represent those with ordinary component εO<0 and extraordinary component εE>0: (a) NHs filled with a-GST and (b) NHs filled with c-GST.

Grahic Jump Location
Fig. 3

Total near-field radiative heat flux and modulation ratio versus gap distance with f=0.3. Volume filling factor f is identical for both sides in our configuration.

Grahic Jump Location
Fig. 4

Contour plots of the transmission coefficient ξ (ω, β) and dispersion relation between (a) both a-GST-filled SiC NHs, (b) both c-GST-filled SiC NHs, (c) both evacuated SiC NHs, and (d) heterojunction structure. Dispersion relation is plotted by the reddish brown dashed line.

Grahic Jump Location
Fig. 5

Total near-field radiative heat flux and modulation ratio versus volume filling factor at vacuum gap distance of 100 nm. Volume filling factor f is identical for both sides in our configuration.

Grahic Jump Location
Fig. 6

Total near-field radiative heat flux and modulation ratio with graphene coverage versus gap distance with f=0.3 and Tg=300 K. Volume filling factor f is identical for both sides in our configuration. The chemical potential is μg=0.5 eV.

Grahic Jump Location
Fig. 7

Contour plots of the transmission coefficient ξ (ω, β) with graphene coverage on both sides between (a) both a-GST-filled SiC NHs, (b) both c-GST-filled SiC NHs, (c) both evacuated SiC NHs, and (d) heterojunction structure

Grahic Jump Location
Fig. 8

Total near-field radiative heat flux and modulation ratio with graphene coverage versus volume filling factor at the vacuum gap distance of 100 nm. Volume filling factor f is identical for both sides in our configuration. The chemical potential is μg=0.5 eV.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In