0
Research Papers: Heat and Mass Transfer

Energy Savings in Desalination Technologies: Reducing Entropy Generation by Transport Processes

[+] Author and Article Information
John H. Lienhard V

Fellow ASME
Abdul Latif Jameel Professor
Rohsenow Kendall Heat Transfer Lab,
Department of Mechanical Engineering,
Massachusetts Institute of Technology,
Cambridge, MA 02139
e-mail: lienhard@mit.edu

1All values are approximate and depend on various local considerations, including feed salinity, water recovery ratio, and plant characteristics.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received November 22, 2018; final manuscript received April 9, 2019; published online May 17, 2019. Assoc. Editor: Gongnan Xie.

J. Heat Transfer 141(7), 072001 (May 17, 2019) (11 pages) Paper No: HT-18-1765; doi: 10.1115/1.4043571 History: Received November 22, 2018; Revised April 09, 2019

Desalination systems can be conceptualized as power cycles in which the useful work output is the work of separation of fresh water from saline water. In this framing, thermodynamic analysis provides powerful tools for raising energy efficiency. This paper discusses the use of entropy generation minimization for a spectrum of desalination technologies, including those based on reverse osmosis (RO), humidification–dehumidification (HDH), membrane distillation (MD), electrodialysis (ED), and forward osmosis (FO). Heat and mass transfer are the primary causes of entropy production in these systems. The energy efficiency of desalination is shown to be maximized when entropy generation is minimized. Equipartitioning of entropy generation is considered and applied. The mechanisms of entropy generation are characterized, including the identification of major causes of irreversibility. Methods to limit discarded exergy are also identified. Prospects and technology development needs for further improvement are mentioned briefly.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Topics: Entropy , Water , Membranes , Heat , Pressure
Your Session has timed out. Please sign back in to continue.

References

Schewe, J. , Heinke, J. , Gerten, D. , Haddeland, I. , Arnell, N. W. , Clark, D. B. , Dankers, R. , Eisner, S. , Fekete, B. M. , Colón-González, F. J. , Gosling, S. N. , Kim, H. , Liu, X. , Masaki, Y. , Portmann, F. T. , Satoh, Y. , Stacke, T. , Tang, Q. , Wada, Y. , Wisser, D. , Albrecht, T. , Frieler, K. , Piontek, F. , Warszawski, L. , and Kabat, P. , 2014, “ Multimodel Assessment of Water Scarcity Under Climate Change,” Proc. Natl. Acad. Sci., 111(9), pp. 3245–3250. [CrossRef]
International Desalination Association, 2017, IDA Desalination Yearbook 2017-2018, Media Analytics, Oxford, UK.
Pankratz, T. , 2017, “ On the Road to Recovery,” Water Desalination Rep., 53(26).
Lienhard, J. H. , Thiel, G. P. , Banchik, L. D. , and Warsinger, D. M. , eds., 2016, “ Low Carbon Desalination: Status and Research, Development, and Demonstration Needs,” Report of a Workshop Conducted at the Massachusetts Institute of Technology in Association with the Global Clean Water Desalination Alliance, Massachusetts Institute of Technology, Cambridge, MA, Report.
Mistry, K. H. , McGovern, R. K. , Thiel, G. P. , Summers, E. K. , Zubair, S. M. , and Lienhard, J. H. , 2011, “ Entropy Generation Analysis of Desalination Technologies,” Entropy, 13(10), pp. 1829–1864. [CrossRef]
Lienhard, J. H. , Mistry, K. H. , Sharqawy, M. H. , and Thiel, G. P. , 2017, “ Thermodynamics, Exergy, and Energy Efficiency in Desalination Systems,” Desalination Sustainability: A Technical, Socioeconomic, and Environmental Approach, H. A. Arafat , ed., Elsevier Publishing, Amsterdam, The Netherlands, Chap. 4.
Sharqawy, M. H. , Lienhard, J. H. , and Zubair, S. , 2011, “ On Exergy Calculations for Seawater With Application to Desalination Systems,” Intl. J. Therm. Sci., 50(2), pp. 187–196. [CrossRef]
Mistry, K. H. , and Lienhard, J. H. , 2013, “ Generalized Least Energy of Separation for Desalination and Other Chemical Separation Processes,” Entropy, 15(12), pp. 2046–2080. [CrossRef]
Warsinger, D. M. , Mistry, K. H. , Nayar, K. G. , Chung, H. W. , and Lienhard, J. H. , 2015, “ Entropy Generation of Desalination Powered by Variable Temperature Waste Heat,” Entropy, 17(12), pp. 7530–7566. [CrossRef]
Tow, E. W. , McGovern, R. K. , and Lienhard, J. H. , 2015, “ Raising Forward Osmosis Brine Concentration Efficiency Through Flow Rate Optimization,” Desalination, 366, pp. 71–79. [CrossRef]
Altmann, T. , Robert, J. , Bouma, A. T. , Swaminathan, J. , and Lienhard, J. H. , 2019, “ Primary Energy and Exergy of Desalination Technologies,” Appl. Energy (under review).
Chung, H. W. , Nayar, K. G. , Swaminathan, J. , Chehayeb, K. M. , and Lienhard, J. , 2017, “ Thermodynamic Analysis of Brine Management Methods: Zero-Discharge Desalination and Salinity-Gradient Power Production,” Desalination, 404, pp. 291–303. [CrossRef]
Nayar, K. G. , Fernandes, J. , McGovern, R. K. , Al-Anzi, B. S. , and Lienhard, J. H. , 2019, “ Cost and Energy Needs of RO-ED Crystallizer Systems for Zero Brine Discharge Seawater Desalination,” Desalination, 457, pp. 115–132. [CrossRef]
Carrington, C. G. , and Sun, Z. F. , 1991, “ Second Law Analysis of Combined Heat and Mass Transfer Phenomena,” Intl. J. Heat Mass Transfer, 34(11), pp. 2767–2773. [CrossRef]
Kjelstrup, S. , Bedeaux, D. , Johannessen, E. , and Gross, J. , 2017, Non-Equilibrium Thermodynamics for Engineers, 2nd ed., World Scientific Publishing, Singapore.
Chung, H. W. , Banchik, L. D. , Swaminathan, J. , and Lienhard, J. H. , 2017, “ On the Present and Future Economic Viability of Stand-Alone Pressure-Retarded Osmosis,” Desalination, 408, pp. 133–144. [CrossRef]
El-Sayed, Y. M. , and Silver, R. S. , 1980, “ Fundamentals of Distillation,” Principles of Desalination, 2nd ed., Vol. A, K. S. Spiegler and A. D. Laird , eds., Academic Press, New York, pp. 55–109.
Narayan, G. P. , Lienhard, J. H. , and Zubair, S. M. , 2010, “ Entropy Generation Minimization of Combined Heat and Mass Transfer Devices,” Intl. J. Therm. Sci., 49(10), pp. 2057–2066. [CrossRef]
Callen, H. B. , 1985, Thermodynamics and an Introduction to Thermostatistics, 2nd ed., Wiley, New York.
Bejan, A. , 1988, Advanced Engineering Thermodynamics, Wiley, New York.
Tondeur, D. , and Kvaalen, E. , 1987, “ Equipartition of Entropy Production. An Optimality Criterion for Transfer and Separation Processes,” Ind. Eng. Chem. Res., 26(1), pp. 50–56. [CrossRef]
Johannessen, E. , and Kjelstrup, S. , 2005, “ A Highway in State Space for Reactors With Minimum Entropy Production,” Chem. Eng. Sci., 60(12), pp. 3347–3361. [CrossRef]
Johannessen, E. , Nummedal, L. , and Kjelstrup, S. , 2002, “ Minimizing the Entropy Production in Heat Exchange,” Int. J. Heat Mass Transfer, 45(13), pp. 2649–2654. [CrossRef]
Thiel, G. P. , and Lienhard, J. H. , 2012, “ Entropy Generation in Condensation in the Presence of High Concentrations of Noncondensable Gases,” Int. J. Heat Mass Transfer, 55(19–20), pp. 5133–5147. [CrossRef]
Magnanelli, E. , Johannessen, E. , and Kjelstrup, S. , 2017, “ Entropy Production Minimization as Design Principle for Membrane Systems: Comparing Equipartition Results to Numerical Optima,” Ind. Eng. Chem. Res., 56(16), pp. 4856–4866. [CrossRef]
Thiel, G. P. , McGovern, R. K. , Zubair, S. M. , and Lienhard, J. H. , 2014, “ Thermodynamic Equipartition for Increased Second Law Efficiency,” Appl. Energy, 118, pp. 292–299. [CrossRef]
Chehayeb, K. M. , Narayan, G. P. , Zubair, S. M. , and Lienhard, J. H. , 2015, “ Thermodynamic Balancing of a Fixed-Size Two-Stage Humidification Dehumidification Desalination System,” Desalination, 369, pp. 125–139. [CrossRef]
Chehayeb, K. M. , Nayar, K. G. , and Lienhard, J. H. , 2018, “ On the Merits of Using Multi-Stage and Counterflow Electrodialysis for Reduced Energy Consumption,” Desalination, 439, pp. 1–16. [CrossRef]
International Desalination Association, 2015, IDA Desalination Yearbook 2015–2016, Media Analytics, Oxford, UK.
Ahdab, Y. , Thiel, G. P. , Böhlke, J. K. , Stanton, J. , and Lienhard, J. , 2018, “ Minimum Energy Requirements for Desalination of Brackish Groundwater in the United States,” Water Res., 141, pp. 387–404. [CrossRef] [PubMed]
Spiegler, K. S. , and Kedem, O. , 1966, “ Thermodynamics of Hyperfiltration (Reverse Osmosis): Criteria for Efficient Membranes,” Desalination, 1(4), pp. 311–326. [CrossRef]
Wijmans, J. , and Baker, R. , 1995, “ The Solution-Diffusion Model: A Review,” J. Membr. Sci., 107(1–2), pp. 1–21. [CrossRef]
Paul, D. , 2004, “ Reformulation of the Solution-Diffusion Theory of Reverse Osmosis,” J. Membr. Sci., 241(2), pp. 371–386. [CrossRef]
Wei, Q. J. , McGovern, R. K. , and Lienhard, J. H. , 2017, “ Saving Energy With an Optimized Two-Stage Reverse Osmosis System,” Environ. Sci. Water Res. Technol., 3, pp. 659–670. [CrossRef]
Kurihara, M. , Yamamura, H. , and Nakanishi, T. , 1999, “ High Recovery/High Pressure Membranes for Brine Conversion SWRO Process Development and Its Performance Data,” Desalination, 125(1–3), pp. 9–15. [CrossRef]
Warsinger, D. M. , Tow, E. W. , Nayar, K. G. , Maswadeh, L. A. , and Lienhard, J. H. , 2016, “ Energy Efficiency of Batch and Semi-Batch CCRO Reverse Osmosis Desalination,” Water Res., 106, pp. 272–282. [CrossRef] [PubMed]
Swaminathan, J. , Stover, R. L. , Tow, E. W. , Warsinger, D. M. , and Lienhard, J. H. , 2017, “ Effect of Practical Losses on Optimal Design of Batch RO Systems,” IDA World Congress on Desalination and Water Reuse, International Desalination Association, São Paulo, Brazil, Oct. 15–20, Paper No. IDA17WC–58334.
Wei, Q. J. , Tucker, C. I. , Wu, P. J. , Trueworthy, A. M. , Tow, E. W. , and Lienhard, J. H. , 2019, “ Batch Reverse Osmosis: Experimental Results, Model Validation, and Design Implications,” AMTA/AWWA Membrane Technology Conference and Exposition, New Orleans, Louisiana, Feb.
Swaminathan, J. , Tow, E. W. , Stover, R. L. , and Lienhard, J. H. , 2019, “ Practical Aspects of Batch RO Design for Energy-Efficient Seawater Desalination,” (under review).
Stover, R. L. , 2013, “ Industrial and Brackish Water Treatment With Closed Circuit Reverse Osmosis,” Desalin. Water Treat., 51(4–6), pp. 1124–1130. [CrossRef]
Nayar, K. G. , Wright, N. C. , Thiel, G. P. , Winter, A. G. , and Lienhard, J. H. , 2015, “ Energy Requirements of Alternative Technologies for Desalinating Groundwater for Irrigation,” IDA World Congress on Desalination and Water Reuse, San Diego, CA, Paper No. IDAWC15-Nayar-b.
Bartholomew, T. V. , Mey, L. , Arena, J. T. , Siefert, N. S. , and Mauter, M. S. , 2017, “ Osmotically Assisted Reverse Osmosis for High Salinity Brine Treatment,” Desalination, 421, pp. 3–11. [CrossRef]
Bouma, A. T. , and Lienhard, J. H. , 2018, “ Split-Feed Counterflow Reverse Osmosis for Brine Concentration,” Desalination, 445, pp. 280–291. [CrossRef]
McGovern, R. K. , and Lienhard, J. H. , 2016, “ On the Asymptotic Flux of Ultrapermeable Seawater Reverse Osmosis Membranes Due to Concentration Polarisation,” J. Membr. Sci., 520, pp. 560–565. [CrossRef]
Cohen-Tanugi, D. , McGovern, R. K. , Dave, S. , Lienhard, J. H. , and Grossman, J. C. , 2014, “ Quantifying the Potential of Ultra-Permeable Desalination Membranes,” Energy Environ. Sci., 7(3), pp. 1134–1141. [CrossRef]
Kurihara, M. , Sasaki, T. , Nakatsuji, K. , Kimura, M. , and Henmi, M. , 2015, “ Low Pressure SWRO Membrane for Desalination in the Mega-Ton Water System,” Desalination, 368, pp. 135–139. [CrossRef]
Thiel, G. P. , Tow, E. W. , Banchik, L. D. , Chung, H. W. , and Lienhard, J. H. , 2015, “ Energy Consumption in Desalinating Produced Water From Shale Oil and Gas Extraction,” Desalination, 366, pp. 94–112. [CrossRef]
Nayar, K. G. , Fernandes, J. , McGovern, R. K. , Dominguez, K. P. , McCance, A. , Al-Anzi, B. S. , and Lienhard, J. H. , 2019, “ Cost and Energy Requirements of Hybrid RO and ED Systems for Salt Production,” Desalination, 456, pp. 97–120. [CrossRef]
Lienhard, J. H. , 2019, “ Humidification-Dehumidification Desalination,” Desalination: Water From Water, 2nd ed., J. Kucera , ed., Scrivener/Wiley, Salem, MA, Chap. 9.
Narayan, G. P. , Mistry, K. H. , Sharqawy, M. H. , Zubair, S. M. , and Lienhard, J. H. , 2010, “ Energy Effectiveness of Simultaneous Heat and Mass Exchange Devices,” Front. Heat Mass Transfer, 1(2), pp. 1–13. [CrossRef]
Narayan, G. P. , St. John, M. , Zubair, S. M. , and Lienhard, J. H. , 2013, “ Thermal Design of the Humidification Dehumidification Desalination System: An Experimental Investigation,” Int. J. Heat Mass Transfer, 58(3), pp. 740–748. [CrossRef]
Mistry, K. H. , Lienhard, J. H. , and Zubair, S. M. , 2010, “ Effect of Entropy Generation on the Performance of Humidification-Dehumidification Desalination Cycles,” Int. J. Therm. Sci., 49(9), pp. 1837–1847. [CrossRef]
Mistry, K. H. , Mitsos, A. H. , and Lienhard, J. H. , 2011, “ Optimal Operating Conditions and Configurations for Humidification-Dehumidification Desalination Cycles,” Int. J. Therm. Sci., 50(5), pp. 779–789. [CrossRef]
McGovern, R. K. , Thiel, G. P. , Narayan, G. P. , Zubair, S. M. , and Lienhard, J. H. , 2013, “ Performance Limits of Single and Dual Stage Humidification Dehumidification Desalination Systems,” Appl. Energy, 102, pp. 1081–1090. [CrossRef]
Chehayeb, K. M. , Narayan, G. P. , Zubair, S. M. , and Lienhard, J. H. , 2014, “ Use of Multiple Extractions and Injections to Thermodynamically Balance the Humidification Dehumidification Desalination System,” Int. J. Heat Mass Transfer, 68, pp. 422–434. [CrossRef]
Narayan, G. P. , Chehayeb, K. M. , McGovern, R. K. , Thiel, G. P. , Zubair, S. M. , and Lienhard, J. H. , 2013, “ Thermodynamic Balancing of the Humidification Dehumidification Desalination System by Mass Extraction and Injection,” Int. J. Heat Mass Transfer, 57(2), pp. 756–770. [CrossRef]
Summers, E. K. , Antar, M. A. , and Lienhard, J. H. , 2012, “ Design and Optimization of an Air Heating Solar Collector With Integrated Phase Change Material Energy Storage for Use in Humidification-Dehumidification Desalination,” Sol. Energy, 86(11), pp. 3417–3429. [CrossRef]
Summers, E. K. , Lienhard, J. H. , and Zubair, S. M. , 2011, “ Air-Heating Solar Collectors for Humidification-Dehumidification Desalination Systems,” ASME J. Sol. Energy Eng., 113(1), p. 011016. [CrossRef]
Summers, E. K. , Lienhard, J. H. , and Zubair, S. M. , 2010, “ Air-Heating Solar Collectors for Humidification-Dehumidification Desalination Systems,” 14th International Heat Transfer Conference (IHTC-14), Washington, DC, Paper No. IHTC23214.
Sievers, M. , and Lienhard, J. H. , 2013, “ Design of Flat-Plate Dehumidifiers for Humidification Dehumidification Desalination Systems,” Heat Transfer Eng., 34(7), pp. 543–561. [CrossRef]
Sievers, M. , and Lienhard, J. H. , 2015, “ Design of Plate-Fin Tube Dehumidifiers for Humidification-Dehumidification Desalination Systems,” Heat Transfer Eng., 36(3), pp. 223–243. [CrossRef]
Narayan, G. P. , Sharqawy, M. H. , Lam, S. , Das, S. K. , and Lienhard, J. H. , 2013, “ Bubble Columns for Condensation at High Concentrations of Noncondensable Gas: Heat Transfer Model and Experiments,” AIChE J., 59(5), pp. 1780–1790. [CrossRef]
Tow, E. W. , and Lienhard, J. H. , 2013, “ Analytical Modeling of a Bubble Column Dehumidifier,” ASME Paper No. HT2013-17763.
Tow, E. W. , and Lienhard, J. H. , 2014, “ Measurements of Heat Transfer Coefficients to Cylinders in Shallow Bubble Columns,” 15th International Heat Transfer Conference (IHTC-15), Kyoto, Japan, Paper No. IHTC15-8857.
Tow, E. W. , and Lienhard, J. H. , 2014, “ Heat Transfer to a Horizontal Cylinder in a Shallow Bubble Column,” Int. J. Heat Mass Transfer, 79, pp. 353–361. [CrossRef]
Tow, E. W. , and Lienhard, J. H. , 2014, “ Experiments and Modeling of Bubble Column Dehumidifier Performance,” Int. J. Therm. Sci., 80, pp. 65–75. [CrossRef]
Narayan, G. P. , Lam, S. , and St. John, M. , 2017, “ Systems Including a Condensing Apparatus Such as a Bubble Column Condenser,” U.S. Patent No. 9,700,811.
Liu, H. , and Sharqawy, M. H. , 2016, “ Experimental Performance of Bubble Column Humidifier and Dehumidifier Under Varying Pressure,” Int. J. Heat Mass Transfer, 93, pp. 934–944. [CrossRef]
Duong, H. C. , Cooper, P. , Nelemans, B. , Cath, T. Y. , and Nghiem, L. D. , 2016, “ Evaluating Energy Consumption of Air Gap Membrane Distillation for Seawater Desalination at Pilot Scale Level,” Sep. Purif. Technol., 166, pp. 55–62. [CrossRef]
Swaminathan, J. , Chung, H. W. , Warsinger, D. M. , and Lienhard, J. H. , 2018, “ Energy Efficiency of Membrane Distillation Up to High Salinity: Evaluating Critical System Size and Optimal Membrane Thickness,” Appl. Energy, 211, pp. 715–734. [CrossRef]
Swaminathan, J. , Chung, H. W. , Warsinger, D. M. , and Lienhard, J. H. , 2016, “ Membrane Distillation Model Based on Heat Exchanger Theory and Configuration Comparison,” Appl. Energy, 184, pp. 491–505. [CrossRef]
Swaminathan, J. , Chung, H. W. , Warsinger, D. M. , and Lienhard, J. H. , 2016, “ Simple Method for Balancing Direct Contact Membrane Distillation,” Desalination, 383, pp. 53–59. [CrossRef]
Summers, E. K. , Arafat, H. A. , and Lienhard, J. H. , 2012, “ Energy Efficiency Comparison of Single Stage Membrane Distillation (MD) Desalination Cycles in Different Configurations,” Desalination, 290, pp. 54–66. [CrossRef]
Swaminathan, J. , Chung, H. W. , Warsinger, D. , Al-Marzooqi, F. , Arafat, H. A. , and Lienhard, J. H. , 2016, “ Energy Efficiency of Permeate Gap and Novel Conductive Gap Membrane Distillation,” J. Membr. Sci., 502, pp. 171–178. [CrossRef]
Chung, H. W. , Swaminathan, J. , Warsinger, D. M. , and Lienhard, J. H. , 2016, “ Multistage Vacuum Membrane Distillation (MSVMD) Systems for High Salinity Applications,” J. Membr. Sci., 497, pp. 128–141. [CrossRef]
Warsinger, D. M. , Swaminathan, J. , Guillen-Burrieza, E. , Arafat, H. A. , and Lienhard, J. H. , 2015, “ Scaling and Fouling in Membrane Distillation for Desalination Applications: A Review,” Desalination, 356, pp. 294–313. [CrossRef]
Wright, N. C. , and Winter, A. G. , 2014, “ Justification for Community-Scale Photovoltaic-Powered Electrodialysis Desalination Systems for Inland Rural Villages in India,” Desalination, 352, pp. 82–91. [CrossRef]
Strathmann, H. , 2004, Ion-Exchange Membrane Separation Processes, Elsevier B. V, Amsterdam, The Netherlands.
Chehayeb, K. M. , and Lienhard, J. H. , 2017, “ Entropy Generation Analysis of Electrodialysis,” Desalination, 413, pp. 184–198. [CrossRef]
McGovern, R. K. , and Lienhard, J. H. , 2014, “ On the Potential of Forward Osmosis to Energetically Outperform Reverse Osmosis Desalination,” J. Membr. Sci., 469, pp. 245–250. [CrossRef]
Johnson, D. J. , Suwaileh, W. A. , Mohammed, A. W. , and Hilal, N. , 2018, “ Osmotic's Potential: An Overview of Draw Solutes for Forward Osmosis,” Desalination, 434, pp. 100–120. [CrossRef]
Tow, E. W. , and Lienhard, J. H. , 2017, “ Unpacking Compaction: Effect of Hydraulic Pressure on Alginate Fouling,” J. Membr. Sci., 544, pp. 221–233. [CrossRef]
Lienhard, J. H. , 2018, “ Entropy Generation Minimization for Energy-Efficient Desalination,” ASME Paper No. IMECE2018-88543.
Nayar, K. G. , Sharqawy, M. H. , Banchik, L. D. , and Lienhard, J. H. , 2016, “ Thermophysical Properties of Seawater: A Review and New Correlations That Include Pressure Dependence,” Desalination, 387, pp. 1–24. [CrossRef]
Sharqawy, M. H. , Lienhard, J. H. , and Zubair, S. M. , 2010, “ Thermophysical Properties of Seawater: A Review of Existing Correlations and Data,” Desal. Water Treat., 16(1–3), pp. 354–380. [CrossRef]
Nayar, K. G. , Panchanathan, D. , McKinley, G. H. , and Lienhard, J. , 2014, “ Surface Tension of Seawater,” J. Phys. Chem. Ref. Data, 43(4), p. 43103. [CrossRef]
Thiel, G. P. , and Lienhard, J. H. , 2014, “ Treating Produced Water From Hydraulic Fracturing: Composition Effects on Scale Formation and Desalination System Selection,” Desalination, 346, pp. 54–69. [CrossRef]
Mistry, K. H. , and Lienhard, J. H. , 2013, “ Effect of Nonideal Solution Behavior on Desalination of a Sodium Chloride Solution and Comparison to Seawater,” ASME J. Energy Resour. Technol., 135(4), p. 042003. [CrossRef]
Mistry, K. H. , Hunter, H. A. , and Lienhard, J. H. , 2013, “ Effect of Composition and Nonideal Solution Behavior on Desalination Calculations for Mixed Electrolyte Solutions With Comparison to Seawater,” Desalination, 318, pp. 34–47. [CrossRef]
Nummedal, L. , and Kjelstrup, S. , 2001, “ Equipartition of Forces as a Lower Bound on the Entropy Production in Heat Exchange,” Int. J. Heat Mass Transfer, 44(15), pp. 2827–2833. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Control volume for a desalination plant

Grahic Jump Location
Fig. 2

Least work of separation versus pure water recovery ratio for various feed salinities [6]. Typical seawater has a salinity of 35 g/kg.

Grahic Jump Location
Fig. 3

Balancing a counterflow heat exchanger

Grahic Jump Location
Fig. 4

A single-stage reverse osmosis system [6]

Grahic Jump Location
Fig. 5

Typical distribution of feed hydraulic and osmotic pressures in a seawater RO module

Grahic Jump Location
Fig. 6

Batch RO system with high pressure, variable-volume tank [36] (Reprinted with permission of Elsevier © 2016). The system is filled with feed, which is gradually pressurized and concentrated during a single cycle. Dotted flows (refill and brine reject) occur between cycles.

Grahic Jump Location
Fig. 7

Schematic drawing of a basic open-air, closed-water HDH system

Grahic Jump Location
Fig. 8

Energy efficiency (GOR) versus HCRd [27] (Reprinted with permission from Elsevier © 2015)

Grahic Jump Location
Fig. 9

Entropy generation versus HCRd [27] (Reprinted with permission from Elsevier © 2015)

Grahic Jump Location
Fig. 10

Balancing direct-contact membrane distillation [70] (Reprinted with permission from Elsevier © 2018). Balance is achieved by matching the varying capacity rates of the two streams at either end of the exchanger.

Grahic Jump Location
Fig. 11

Balancing air-gap membrane distillation [70] (Reprinted with permission from Elsevier © 2018). Balance is achieved locally because the capacity rate of the warm stream equals the sum of the preheat and condensate streams.

Grahic Jump Location
Fig. 12

Schematic drawing of an electrodialysis stack [79] (Reprinted with permission from Elsevier © 2017)

Grahic Jump Location
Fig. 13

Second-law efficiency of an FO exchanger versus ratio of draw to feed mass flow rate for three values of the pinch pressure difference [10] (Reprinted with permission from Elsevier© 2015)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In