0
Research Papers: Natural and Mixed Convection

Experimental Heat Transfer From Heating Source Subjected to Rigorous Natural Convection Inside Enclosure and Cooled by Forced Nanofluid Flow

[+] Author and Article Information
Khaled Khodary Esmaeil

Mechanical Power Engineering Department,
Faculty of Engineering,
Tanta University,
Tanta 31527, Egypt;
Mechanical Engineering Department,
College of Engineering,
Qassim University,
Buraidah 51452, Saudi Arabia

Gamal I. Sultan

Mechanical Engineering Department,
College of Engineering,
Qassim University,
Buraidah 51452, Saudi Arabia;
Mechanical Power Engineering Department,
Faculty of Engineering,
Mansoura University,
Mansoura 35516, Egypt

Fahad A. Al-Mufadi, Radwan A. Almasri

Mechanical Engineering Department,
College of Engineering,
Qassim University,
Buraidah 51452, Saudi Arabia

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received March 3, 2018; final manuscript received April 24, 2019; published online May 20, 2019. Assoc. Editor: Antonio Barletta.

J. Heat Transfer 141(7), 072501 (May 20, 2019) (9 pages) Paper No: HT-18-1126; doi: 10.1115/1.4043673 History: Received March 03, 2018; Revised April 24, 2019

Mixed convection heat transfer characteristics from heat source located symmetrically inside square enclosure and cooled by Al2O3/water-based nanofluid flow was experimentally investigated. The configuration was subjected to high levels of natural convection and low rates of nanofluid flow. The nanofluid thermophysical properties were characterized using the available correlations in the literatures except the viscosity which was measured and correlated in terms of the nanoparticles loading ratios. Comparative analysis indicated that the application of nanofluid could not guarantee heat transfer enhancement in configurations dominated by natural convection. Exception heat transfer enhancement was only found when very low nanoparticles loading ratio was applied. Instead, heat transfer degradation was found especially in the cases of highest nanoparticles loading ratios. Alternatively, heat transfer enhancement was observed when the forced convection effect was substantial at the highest nanofluid flow rate. The present conclusions were justified and correlated to the findings reported in the literature.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Choi, S. U. S. , 1995, “ Enhancing Thermal Conductivity of Fluids With Nano-Particles,” ASME Developments and Applications of Non-Newtonian Flows, Vol. 66, D. A. Siginer and H. P. Wang , eds., American Society of Mechanical Engineers, New York, pp. 99–103.
Eastman, J. A. , Choi, U. S. , Li, S. , Thompson, L. J. , and Lee, S. , 1997, “ Enhanced Thermal Conductivity Through the Development of Nanofluids,” MRS Online Proc., 457, pp. 3–11.
Xuan, Y. , and Li, Q. , 2000, “ Heat Transfer Enhancement of Nanofluids,” Int. J. Heat Fluid Transfer, 21(1), pp. 58–64. [CrossRef]
Bhattacharya, P. , Samanta, A. N. , and Chakraborty, S. , 2009, “ Numerical Study of Conjugate Heat Transfer Rectangular Microchannel Heat Sink Al2O3-Water Nanofluid,” Heat Mass Transfer, 45(10), pp. 1323–1333. [CrossRef]
Naik, M. T. , Vojkani, E. , and Ravi, G. , 2013, “ Numerical Investigation of Turbulent Flow and Heat Transfer Characteristics of PGW-CuO Nanofluids,” Int. J. Min., Metall. Mech. Eng. (IJMMME), 1(2), pp. 141–145. http://www.isaet.org/images/extraimages/P413038.pdf
Reji Kumar, R. , Sridhar, K. , and Narasimha, M. , 2013, “ Heat Transfer Enhancement in Domestic Refrigerator Using R600a/Mineral Oil/Nano-Al2O3 as Working Fluid,” Int. J. Comput. Eng. Res., 3(4), pp. 42–50. https://pdfs.semanticscholar.org/4ae6/d7620c03c72b7dc02d1fd874edff39b662f2.pdf
Shelke, D. B. , and Hole, J. A. , 2013, “ Heat Transfer Enhancement of Tube in Tube Heat Exchanger Using CuO-Water Nanofluid Under Turbulent Flow,” Int. J. Mech. Civ. Automobile Prod. Eng. (VSRD), 3(3), pp. 61–70. http://www.vsrdjournals.com/pdf/VSRDIJMCAPE/2013_3_March/4_DB_Shelke_1546_Research_Article_VSRDIJMCAPE_March_2013.pdf
Bhimani, V. L. , Rathod, P. P. , and Sorathiya, A. S. , 2013, “ Experimental Study of Heat Transfer Enhancement Using Water Based Nanofluids as a New Coolant for Car Radiators,” Int. J. Emerging Technol. Adv. Eng., 3(6), pp. 295–302. https://ijetae.com/files/Volume3Issue6/IJETAE_0613_49.pdf
Rashmi, W. , Khalid, M. , Ismail, A. F. , Saidur, R. , and Rashid, A. K. , 2015, “ Experimental and Numerical Investigation of Heat Transfer in CNT Nanofluids,” J. Exp. Nanosci., 10(7), pp. 545–563. [CrossRef]
Escher, W. , Brunschwiler, T. , Shalkevich, N. , Shalkevich, A. , Burgi, T. , Michel, B. , and Poulikakos, D. , 2011, “ On Cooling of Electronics With Nanofluid,” ASME J. Heat Transfer, 133(5), p. 051401. [CrossRef]
Sohel, M. R. , Khaleduzzaman, S. S. , Saidur, R. , Hepbasli, A. , Sabri, M. F. M. , and Mahbubul, I. M. , 2014, “ An Experimental Investigation of Heat Transfer Enhancement of a Minichannel Heat Sink Using Al2O2–H2O Nanofluid,” Int. J. Heat Mass Transfer, 74, pp. 164–172. [CrossRef]
Ningbo, Z. , Jialong, Y. , Hui, L. , Ziyin, Z. , and Shuying, L. , 2016, “ Numerical Investigations of Laminar Heat Transfer and Flow Performance of Al2O3-Water Nanofluids in a Flat Tube,” Int. J. Heat Mass Transfer, 92, pp. 268–382. [CrossRef]
Jang, S. P. , and Choi, S. U. S. , 2007, “ Effects of Various Parameters on Nanofluid Thermal Conductivity,” ASME J. Heat Transfer, 129, pp. 617–623. [CrossRef]
Khorgade, R. D. , and Shelke, R. S. , 2015, “ Experimental Study on Improvement of Heat Tran Journalof Advanced Engineering and Global Technology, Vsfer of Minichannel Heat Sink Using Nanofluids,” Int. J. Adv. Eng. Global Technol., 3(6), pp. 796–806. http://ijaegt.com/wp-content/uploads/2015/04/409500-pp796-806-rupesh.pdf
Adam, A. M. , Ghazali, N. M. , and Ahmed, R. , 2016, “ Optimization of Nanofluid Cooled Microchannel Heat Sink,” Therm. Sci., 20(1), pp. 109–118. [CrossRef]
Ben-Cheikh, N. , Chamkha, A. J. , Ben-Beya, B. , and Lili, T. , 2013, “ Natural Convection of Water-Based Nanofluids in a Square Enclosure With Non-Uniform Heating of the Bottom Wall,” J. Mod. Phys., 4(2), pp. 147–159. [CrossRef]
Jou, R. Y. , and Tzeng, S. C. , 2006, “ Numerical Research of Nature Convective Heat Transfer Enhancement,” Int. Commun. Heat Mass Transfer, 33(6), pp. 727–736. [CrossRef]
Khanafer, K. , Vafai, K. , and Lightstone, M. , 2003, “ Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids,” Int. J. Heat Mass Transfer, 46(19), pp. 3639–3663. [CrossRef]
Oztop, H. F. , and Abu-Nada, E. , 2008, “ Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids,” Int. J. Heat Fluid Flow, 29(5), pp. 1326–1336. [CrossRef]
Mahmoodi, M. , 2011, “ Numerical Simulation of Free Convection of a Nanofluid in L-Shaped Cavities,” Int. J. Therm. Sci., 50(9), pp. 1731–1740. [CrossRef]
Öğüt, E. B. , 2009, “ Natural Convection of Water-Based Nanofluids in an Inclined Enclosure With a Heat Source,” Int. J. Therm. Sci., 48, pp. 2063–2073. [CrossRef]
Putra, N. , Roetzel, W. , and Das, S. K. , 2003, “ Natural Convective of Nanofluids,” Heat Mass Transfer, 39(8–9), pp. 775–784. [CrossRef]
Li, C. H. , and Peterson, G. P. , 2010, “ Experimental Studies of Natural Convection Heat Transfer of Al2O3/DI Water Nanoparticle Suspensions (Nanofluids),” Adv. Mech. Eng., 2010, p. 742739.
Wen, D. , and Ding, Y. , 2005, “ Formulation of Nanofluids for Natural Convective Heat Transfer Applications,” Int. J. Heat Fluid Flow, 26(6), pp. 855–864. [CrossRef]
Ho, C. J. , Liu, W. K. , Chang, Y. S. , and Lin, C. C. , 2010, “ Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study,” Int. J. Therm. Sci., 49(8), pp. 1345–1353. [CrossRef]
Santra, A. K. , Sen, S. , and Chakraborty, N. , 2008, “ Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper–Water Nanofluid,” Int. J. Therm. Sci., 47(9), pp. 1113–1122. [CrossRef]
Esmaeil, K. K. , 2013, “ Numerical Feasibility Study of Utilizing Nanofluids in Laminar Natural Convection Inside Enclosures,” Heat Mass Transfer, 49(1), pp. 41–54. [CrossRef]
Esmaeil, K. K. , 2015, “ Thermophysical Properties-Based Evaluation of Nanofluids Laminar Natural Convection Inside Square Enclosure,” J. Thermophys. Heat Transfer, 29(1), pp. 1–15. [CrossRef]
Kretzschmar, H.-J. , Herrmann, S. , Kunick, M. , and Posselt, J. , “ Zittau's Fluid Property Calculator, Water and Steam IAPWS-IF97—LibIF97,” Goerlitz University of Applied Sciences, Zittau, Germany, accessed May 13, 2019, https://web1.hszg.de/thermo_fpc/index.php
Corcione, M. , 2010, “ Heat Transfer Features of Buoyancy-Driven Nanofluids Inside Rectangular Enclosures Differentially Heated at the Sidewalls,” Int. J. Therm. Sci., 49(9), pp. 1536–1546. [CrossRef]
Akilu, S. , Sharma, K. V. , Baheta, A. T. , and Mamat, R. , 2016, “ A Review of Thermophysical Properties of Water Based Composite Nanofluids,” Renewable Sustainable Energy Rev., 66, pp. 654–678. [CrossRef]
Gupta, M. , Singh, V. , Kumar, R. , and Said, Z. , 2017, “ A Review on Thermophysical Properties of Nanofluids and Heat Transfer Applications,” Renewable Sustainable Energy Rev., 74, pp. 638–670. [CrossRef]
Eggers, J. R. , and Kabelac, S. , 2016, “ Nanofluids Revisited,” Appl. Therm. Eng., 106, pp. 1114–1126. [CrossRef]
Maxwell, J. C. , 1904, A Treatise on Electricity and Magnetism, 2nd ed., Oxford University Press, Cambridge, UK, pp. 435–441.
Hamilton, R. L. , and Crosser, O. K. , 1962, “ Thermal Conductivity of Heterogeneous Two-Component Systems,” IEC Fundam., 1, pp. 187–191. [CrossRef]
Yu, W. , and Choi, S. U. S. , 2003, “ The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model,” J. Nanopart. Res., 5(1/2), pp. 167–171. [CrossRef]
Hui, P. M. , Zhang, X. , Markworth, A. J. , and Stroud, D. , 1999, “ Thermal Conductivity of Graded Composites: Numerical Simulations and an Effective Medium Approximation,” J. Mater. Sci., 34(22), pp. 5497–5503. [CrossRef]
Xie, H. , Fujii, M. , and Zhang, X. , 2005, “ Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture,” Int. J. Heat Mass Transfer, 48(14), pp. 2926–2932. [CrossRef]
Koo, J. , and Kleinstreuer, C. , 2004, “ A New Thermal Conductivity Model for Nanofluids,” J. Nanopart. Res., 6(6), pp. 577–588. [CrossRef]
Vajjha, R. S. , and Das, D. K. , 2009, “ Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations,” Int. J. Heat Mass Transfer, 52(21–22), pp. 4675–4682. [CrossRef]
Patel, H. E. , Sundararajan, T. , and Das, S. K. , 2010, “ An Experimental Investigation Into the Thermal Conductivity Enhancement in Oxide and Metallic Nanofluids,” J. Nanopart. Res., 12(3), pp. 1015–1031. [CrossRef]
Leong, K. C. , Yang, C. , and Murshed, S. M. S. , 2006, “ A Model for the Thermal Conductivity of Nanofluids—The Effect of Interfacial Layer,” J. Nanopart. Res., 8(2), pp. 245–254. [CrossRef]
Lee, S. , Choi, S. U. S. , Li, S. , and Eastman, J. A. , 1999, “ Measuring Thermal Conductivity of Fluids Containing Oxide Nano-Particles,” ASME J. Heat Transfer, 121(2), pp. 280–289. [CrossRef]
Das, S. K. , Putra, N. , Thiesen, P. , and Roetzel, W. , 2003, “ Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,” ASME J. Heat Transfer, 125(4), pp. 567–574. [CrossRef]
Wang, X. , Xu, X. , and Choi, S. U. S. , 1999, “ Thermal Conductivity of Nanoparticle-Fluid Mixture,” J. Thermophys. Heat Transfer, 13(4), pp. 474–480. [CrossRef]
Xie, H. Q. , Wang, J. C. , Xi, T. G. , Liu, Y. , Ai, F. , and Wu, Q. R. , 2002, “ Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles,” J. Appl. Phys., 91(7), pp. 4568–4572. [CrossRef]
Prasher, R. , Bhattacharya, P. , and Phelan, P. E. , 2006, “ Brownian-Motion-Based Convective–Conductive Model for the Effective Thermal Conductivity of Nanofluids,” ASME J. Heat Transfer, 128(6), pp. 588–595. [CrossRef]
Buongiorno, J. , Venerus, D. C. , Prabhat, N. , McKrell, T. , Townsend, J. , Christianson, R. , Tolmachev, Y. V. , Keblinski, P. , Hu, L.-W. , Alvarado, J. L. , Bang, I. C. , Bishnoi, S. W. , Bonetti, M. , Botz, F. , Cecere, A. , Chang, Y. , Chen, G. , Chen, H. , Chung, S. J. , Chyu, M. K. , Das, S. K. , Di Paola, R. , Ding, Y. , Dubois, F. , Dzido, G. , Eapen, J. , Escher, W. , Funfschilling, D. , Galand, Q. , Gao, J. , Gharagozloo, P. E. , Goodson, K. E. , Gutierrez, J. G. , Hong, H. , Horton, M. , Hwang, K. S. , Iorio, C. S. , Jang, S. P. , Jarzebski, A. B. , Jiang, Y. , Jin, L. , Kabelac, S. , Kamath, A. , Kedzierski, M. A. , Kieng, L. G. , Kim, C. , Kim, J.-H. , Kim, S. , Lee, S. H. , Leong, K. C. , Manna, I. , Michel, B. , Ni, R. , Patel, H. E. , Philip, J. , Poulikakos, D. , Reynaud, C. , Savino, R. , Singh, P. K. , Song, P. , Sundararajan, T. , Timofeeva, E. , Tritcak, T. , Turanov, A. N. , Van Vaerenbergh, S. , Wen, D. , Witharana, S. , Yang, C. , Yeh, W.-H. , Zhao, X.-Z. , and Zhou, S.-Q. , 2009, “ A Benchmark Study on the Thermal Conductivity of Nanofluids,” J. Appl. Phys., 106(9), p. 094312. [CrossRef]
Einstein, A. , 1906, “ Eine Neue Bestimmung Der Moleku Ldimensionen,” Annalen Der Phys., 19, pp. 289–306. [CrossRef]
Brinkman, H. C. , 1952, “ The Viscosity of Concentrated Suspensions and Solution,” J. Chem. Phys., 20(4), pp. 571–581. [CrossRef]
Krieger, I. M. , and Dougherty, T. J. , 1959, “ A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres,” Trans. Soc. Rheol., 3(1), pp. 137–152. [CrossRef]
Nielsen, L. E. , 1970, “ Generalized Equation for the Elastic Moduli of Composite Materials,” J. Appl. Phys., 41(11), pp. 4626–4627. [CrossRef]
Lundgren, T. S. , 1972, “ Slow Flow Through Stationary Random Beds and Suspensions of Spheres,” J. Fluid Mech., 51(2), pp. 273–299. [CrossRef]
Batchelor, G. K. , 1977, “ The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles,” J. Fluid Mech., 83(1), pp. 97–117. [CrossRef]
Nguyen, C. T. , Desgranges, F. , Roy, G. , Galanis, N. , Mare, T. , Bouche, S. , and Mintsa, A. H. , 2007, “ Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids—Hysteresis Phenomenon,” Int. J. Heat Fluid Flow, 28(6), pp. 1492–1506. [CrossRef]
Vajjha, R. S. , 2008, “ Measurements of Thermophysical Properties of Nanofluids and Computation of Heat Transfer Characteristics,” M.Sc. thesis, Mechnical Engineering Department, University of Alaska Fairbanks, Fairbanks, AK.
Chandrasekar, M. , Suresh, S. , and Chandra Bose, A. , 2010, “ Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid,” Exp. Therm. Fluid Sci., 34(2), pp. 210–216. [CrossRef]
Venerus, D. C. , Buongiorno, J., Christianson, R., Townsend, J., Bang, I. C., Chen, G., Chung, S. J., Chyu, M., Chen, H., Ding, Y., Dubois, F., Dzido, G., Funfschilling, D., Galand, Q., Gao, J., Hong, H., Horton, M., Hu, L., Iorio, C. S., Jarzebski, A. B., Jiang, Y., Kabelac, S., Kedzierski, M. A., Kim, C., Kim, J.-H., Kim, S., McKrell, T., Ni, R., Philip, J., Prabhat, N., Song, P., Vaerenbergh, S. V., Wen, D., Witharana, S., Zhao, X.-Z., and Zhou S.-Q., 2010, “ Viscosity Measurements on Colloidal Dispersions (Nanofluids) for Heat Transfer Applications,” Appl. Rheol., 20(4), p. 44582.
ASTM, 1970, “ Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids,” American Society of Testing and Material, Washington, DC, Document No. ASTM D445.
Bergman, T. L. , Lavine, A. S. , Incropera, F. P. , and Dewitt, D. P. , 2011, Fundamentals of Heat and Mass Transfer, 7th ed., Wiley, Hoboken, NJ.
Sumon, S. , Goutam, S. , Mohammad, A. , and Md. Quamrul, I. , 2006, “ Combined Free and Forced Convection Inside a Two-Dimensional Multiple Ventilated Rectangular Enclosure,” ARPN J. Eng. Appl. Sci., 1(3), pp. 23–35. http://www.arpnjournals.com/jeas/research_papers/rp_2006/jeas_1006_18.pdf

Figures

Grahic Jump Location
Fig. 1

Experimental test rig: (1) housing case, (2) base plate, (3) rectangular enclosure, (4) rectangular heat source, (5) insulating shroud, (6) thermocouples, (7) head exchanger, (8) fluid reservoir, (9) immersed pump, (10) regulation flow valve, (11) voltmeter, (12) ammeter, (13) autotransformer, (14) National Instrument data acquisition, and (15) disk top computer

Grahic Jump Location
Fig. 2

Assembly of test section: (16) cooling working fluid, (17) ceramic core, (18) nickel–chromium wire, (19) mica-sheet, and (20) T-type thermocouples

Grahic Jump Location
Fig. 3

Nanofluid effective thermal conductivity ratio

Grahic Jump Location
Fig. 4

Validation results of viscosity measuring apparatus

Grahic Jump Location
Fig. 5

Measured viscosity ratios for different weight fractions at different temperatures

Grahic Jump Location
Fig. 6

Correlation for the viscosity ratio for different weight fractions

Grahic Jump Location
Fig. 7

Nusselt number versus Richardson number for specific nanofluid flow rates and different nanoparticles loading ratios

Grahic Jump Location
Fig. 8

Heat transfer coefficient versus nanoparticles loading ratios for specific heat flux intensity and different mass flow rates

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In