Heat Transfer by Combined Forced Convection and Thermal Radiation in a Heated Tube

[+] Author and Article Information
M. Perlmutter, R. Siegel

Lewis Research Center, National Aeronautics and Space Administration (NASA), Cleveland, Ohio

J. Heat Transfer 84(4), 301-311 (Nov 01, 1962) (11 pages) doi:10.1115/1.3684378 History: Received July 28, 1961


An analysis is made to study the heat exchange by combined forced convection and thermal radiation in a tube when there is a specified heat flux imposed at the tube wall. The gas flowing in the tube is assumed transparent to radiation, so that the radiation which is included takes place between the elements of the internal tube surface and between this tube surface and the environment at each end of the tube. The inside surface of the tube is a black emitter and the outside is assumed perfectly insulated. The heat-transfer coefficient for convection alone from the tube wall to the gas is assumed constant. The energy equation governing the heat exchange is solved by two methods which provide results that are in good agreement with each other. Numerical examples of the wall and gas-temperature variations along the tube show the influence of the system parameters such as inlet gas temperature, tube length, and convective heat-transfer coefficient. A simple method is outlined, which can be used under some conditions to obtain an approximate wall-temperature distribution.

Copyright © 1962 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In