Mass and Heat Transfer From an Enclosed Rotating Disk With and Without Source Flow

[+] Author and Article Information
Frank Kreith, E. Doughman

University of Colorado, Boulder, Colo.

H. Kozlowski

Pratt & Whitney Corporation

J. Heat Transfer 85(2), 153-162 (May 01, 1963) (10 pages) doi:10.1115/1.3686038 History: Received November 10, 1961


The heat-transfer characteristics of a partially enclosed rotating disk have been investigated experimentally by means of a mass-transfer analog. Mass-transfer rates to air from naphthalene coated disks of 4 and 8 in. diameter were measured at speeds between zero and 10,000 rpm and the influence of the spacing between the rotating disk and its housing was investigated with and without source flow. From the experimental results a dimensionless correlation equation suitable for predicting average heat and mass-transfer coefficients for rotating disks with source flow in turbulent flow at rotational Reynolds numbers up to 4 × 105 was deduced. The flow pattern was investigated by means of a hot wire, a smoke visualization technique, and the china clay method.

Copyright © 1963 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In