Estimation of Steady-State Steam Void-Fraction by Means of the Principle of Minimum Entropy Production

[+] Author and Article Information
S. M. Zivi

Space Technology Laboratories, Inc., Redondo Beach, Calif.

J. Heat Transfer 86(2), 247-251 (May 01, 1964) (5 pages) doi:10.1115/1.3687113 History: Received April 23, 1963


An analysis of steam-void fraction in two-phase flow is carried out, utilizing the principle that in a steady-state thermodynamic process the rate of entropy production is minimum. The two-phase flow is idealized in the analysis to be a truly steady-state process. The effects of liquid entrainment and wall friction on the void fraction and slip ratio are evaluated. It is found that the slip-ratio in an idealized two-phase flow with zero wall friction and zero entrainment equals (ρf /ρg )1/3 . Data from a number of experiments are found to be bracketed between this result and the result obtained by assuming complete entrainment (slip ratio = 1).

Copyright © 1964 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In