A Mathematical Model for Transient Subchannel Analysis of Rod-Bundle Nuclear Fuel Elements

[+] Author and Article Information
D. S. Rowe

Battelle–Northwest, Richland, Wash.

J. Heat Transfer 95(2), 211-217 (May 01, 1973) (7 pages) doi:10.1115/1.3450028 History: Received November 24, 1971; Online August 11, 2010


This paper presents a mathematical method for analyzing transient flow and enthalpy transport in rod-bundle nuclear fuel elements during both boiling and nonboiling conditions. A mathematical model is formulated by dividing the bundle flow area into flow subchannels that are assumed to contain one-dimensional flow and are coupled to each other by turbulent and diversion crossflow mixing. The mathematical model neglects sonic velocity propagation and neglects temporal and spatial acceleration in the transverse momentum equation. A semiexplicit finite-difference scheme is used to perform a boundary-value solution where the boundary conditions are the inlet enthalpy, inlet flow rate, and exit pressure. Calculations are presented to show the effect of rapid changes in heat flux, inlet enthalpy, and inlet flow rate on the subchannel flow and enthalpy distribution in rod bundles.

Copyright © 1973 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In