Heat Transfer and Friction Loss in Laminar Radial Flows through Rotating Annular Disks

[+] Author and Article Information
S. Mochizuki

Department of Mechanical Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan

Wen-Jei Yang

Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, Mich. 48109

J. Heat Transfer 103(2), 212-217 (May 01, 1981) (6 pages) doi:10.1115/1.3244443 History: Received February 06, 1980; Online October 20, 2009


Heat transfer and pressure drop performance are experimentally studied for laminar radial flow through a stack of corotating annular disks. The disk surfaces are heated by condensing steam to create constant surface temperature condition. The traditionally defined friction factor is modified to include the effect of centrifugal force induced by the rotation of the heat transfer surface on core pressure drop. Empirical equations are derived for the heat transfer and friction factors at zero rotational speed. Test results are obtained for various rotational speeds. It is disclosed that (1) The transition in the radial flow through rotating parallel disk passages occurs at the Reynolds number (based on the hydraulic diameter of the flow passage) of 3000 at which stall propagation occurs in the rotor. (2) In the laminar flow regime, its heat transfer performance at zero rotational speed is superior to forced convection in the triangular, square, annular, rectangular and parallel-plane geometries. (3) The effects of disk surface rotation are twofold: a significant augmentation in heat transfer accompanied by a very substantial reduction in friction loss. (4) These rotational effects decrease with an increase in the fluid flow rate until the transition Reynolds number where the effects of centrifugal and Coriolis forces diminish is reached. (5) Heat transfer performance at low through flows is superior to that of high-performance surfaces for compact heat exchangers.

Copyright © 1981 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In