Analysis of Transient Three-Dimensional Natural Convection in Porous Media

[+] Author and Article Information
Y. T. Chan, S. Banerjee

Department of Chemical and Nuclear Engineering, University of California, Santa Barbara, Santa Barbara, Calif. 93106

J. Heat Transfer 103(2), 242-248 (May 01, 1981) (7 pages) doi:10.1115/1.3244448 History: Received May 28, 1980; Online October 20, 2009


Transient multidimensional natural convection in porous media has been studied using a numerical method based on the simplified marker and cell technique with local cancellation of low order, diffusional truncation errors. The conservation equations and boundary conditions were phrased in terms of the primitive variables, velocity and temperature. Differences in temperature between the fluid and the solid matrix are considered. Heat transfer between the solid and liquid phases was modelled by representing the porous medium as an assemblage of spherical particles, and solving the conduction problem within the spheres at every time step. Nusselt numbers at walls were calculated from the temperature and velocity profiles. Numerical results for heat transfer through fluid saturated porous media heated from below are in good agreement with published experiments. Consideration of heat transfer between the solid and fluid phase leads to Nusselt numbers that vary with the thermophysical properties of the solid material, even when the Rayleigh number and fluid thermophysical properties are kept constant. This is also observed in experiments. The calculations also show convective instabilities of the right period at high Rayleigh numbers.

Copyright © 1981 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In