Natural Convection in Undivided and Partially Divided Rectangular Enclosures

[+] Author and Article Information
M. W. Nansteel, R. Greif

Passive Solar Analysis and Design Group, Lawrence Berkeley Laboratory and Department of Mechanical Engineering, University of California, Berkeley, Calif. 94720

J. Heat Transfer 103(4), 623-629 (Nov 01, 1981) (7 pages) doi:10.1115/1.3244518 History: Received July 27, 1981; Online October 20, 2009


Heat transfer by natural convection in a two-dimensional rectangular enclosure fitted with partial vertical divisions is investigated experimentally. The horizontal walls of the enclosure are adiabatic while the vertical walls are maintained at different temperatures. The experiments are carried out with water, Pr ≃ 3.5, for Rayleigh numbers in the range, 2.3 × 1010 ≤ RaL ≤ 1.1 × 1011 , and an aspect ratio, A = H/L = 1/2. The effect of the partial vertical divisions on the fluid flow and temperature fields is investigated by dye-injection flow visualization and by thermocouple probes, respectively. The effect of the partitions on the heat transfer across the enclosure is also studied and correlations for the Nusselt number as a function of RaL and partition length are generated for both conducting and non-conducting partition materials. Partial divisions are found to have a significant effect on the heat transfer; especially when the divisions are adiabatic. The results also indicate that the partial divisions may have a stabilizing effect on the laminar-transitional flow on the heated vertical walls of the enclosure.

Copyright © 1981 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In