Heat Transfer Coefficients and Patterns of Fluid Flow for Contacting Spheres at Various Angles of Attack

[+] Author and Article Information
E. M. Sparrow, R. F. Prieto

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn. 55455

J. Heat Transfer 105(1), 48-55 (Feb 01, 1983) (8 pages) doi:10.1115/1.3245558 History: Received March 19, 1982; Online October 20, 2009


Wind tunnel experiments were performed to determine heat transfer coefficients and fluid flow patterns for two contacting spheres. The experiments were carried out at three different angles of attack and for Reynolds numbers in the range from 4000 to 26,000. Three heat transfer conditions were considered: (a) both spheres thermally active, (b) forwardmost sphere thermally active and rearmost sphere adiabatic, and (c) forwardmost sphere adiabatic and rearmost sphere thermally active. Complementary experiments for a single sphere, encompassing the same parameter ranges, yielded baseline information for comparison with the two-sphere results. It was found that the largest effects of the sphere-to-sphere interaction on the heat transfer occurred when the two spheres were in line. At this orientation and for higher Reynolds numbers in the investigated range, there was substantial enhancement of the heat transfer with respect to that for the single sphere. At the other angles of attack, there was lesser enhancement. The visualization studies revealed such key fluid flow features as the reattachment of the separated flow from the first sphere on the second, the presence of strong recirculations, and the delay of separation due to pressure-driven transverse flows.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In