Heat Transfer From Interrupted Plates

[+] Author and Article Information
R. L. Zelenka

Bureau of Reclamation, Denver, Colo.

R. I. Loehrke

Mechanical Engineering Department, Colorado State University, Fort Collins, Colo. 80523

J. Heat Transfer 105(1), 172-177 (Feb 01, 1983) (6 pages) doi:10.1115/1.3245537 History: Received January 13, 1982; Online October 20, 2009


The forced convection heat transfer from two plates aligned with the flow direction in a wind tunnel was measured. The effects of leading edge bluntness, plate spacing distance, and Reynolds number on the leading and trailing plate average heat transfer rate were studied. The low Reynolds number, steady laminar and transitional flow regimes investigated are typical for compact heat exchangers. The measured heat transfer rate from the leading plate agrees well with laminar theory for thin plates when the leading edge is rounded. The heat transfer rate from the leading plate with a blunt nose ranges from slightly below theoretical at a Reynolds number which gives a long, steady separation bubble to well above theoretical under conditions of laminar separation and turbulent reattachment. The heat transfer rate from the second plate is influenced by the leading edge configuration of the first plate only at small plate spacing distances and high Reynolds number. At large spacings the mixing provided by the unsteady wake of the first plate dominates that due to the turbulence formed by leading edge separation on the first plate. The leading edge configuration of the second plate is important only at large values of plate spacing. The heat transfer rate from the second plate is generally higher than that predicted by theory for laminar, steady flow over thin plates and may be higher than that on the leading plate.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In