Effect of Inclination on Freezing in a Sealed Cylindrical Capsule

[+] Author and Article Information
E. D. Larson, E. M. Sparrow

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn. 55455

J. Heat Transfer 106(2), 394-401 (May 01, 1984) (8 pages) doi:10.1115/1.3246685 History: Received August 25, 1983; Online October 20, 2009


Experiments were performed to study the heat transfer processes that occur during freezing inside of a sealed cylindrical capsule when the inclination of the capsule is varied parametrically from vertical to horizontal. The phase-change medium was 99 percent pure n-eicosane paraffin. It was found that the amount of mass that solidified during a given freezing period was insensitive to the inclination of the capsule, as was the amount of energy extracted from the capsule. Only highly localized quantities such as the local frozen layer thickness reflected the inclination of the cylinder. Parametric variations were also performed for the degree of sub-cooling of the capsule wall below the fusion temperature and for the degree of superheating of the liquid phase at the onset of freezing. These variations facilitated the identification of the relative importance of the latent and sensible energies to the total extracted energy.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In