An Initial Value Approach to the Inverse Heat Conduction Problem

[+] Author and Article Information
E. Hensel, R. G. Hills

New Mexico State University, Mechanical Engineering Department, Las Cruces, NM 88003

J. Heat Transfer 108(2), 248-256 (May 01, 1986) (9 pages) doi:10.1115/1.3246912 History: Received January 21, 1985; Online October 20, 2009


The one-dimensional linear inverse problem of heat conduction is considered. An initial value technique is developed which solves the inverse problem without need for iteration. Simultaneous estimates of the surface temperature and heat flux histories are obtained from measurements taken at a subsurface location. Past and future measurement times are inherently used in the analysis. The tradeoff that exists between resolution and variance of the estimates of the surface conditions is discussed quantitatively. A stabilizing matrix is introduced to the analysis, and its effect on the resolution and variance of the estimates is quantified. The technique is applied to “exact” and “noisy” numerically simulated experimental data. Results are presented which indicate the technique is capable of handling both exact and noisy data.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In