Effect of Tip-to-Shroud Clearance on Turbulent Heat Transfer From a Shrouded, Longitudinal Fin Array

[+] Author and Article Information
E. M. Sparrow, D. S. Kadle

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

J. Heat Transfer 108(3), 519-524 (Aug 01, 1986) (6 pages) doi:10.1115/1.3246965 History: Received October 08, 1985; Online October 20, 2009


Experiments were performed to determine the response of the heat transfer from a longitudinal fin array to the presence of clearance between the fin tips and an adjacent shroud. During the course of the experiments, the clearance was varied parametrically, starting with the no-clearance case; parametric variations of the fin height and of the rate of fluid flow through the array were also carried out. Air was the working fluid, and the flow was turbulent. The fully developed heat transfer coefficients corresponding to the presence and to the absence of clearance were compared under the condition of equal air flowrate, and substantial clearance-related reductions were found to exist. For clearances equal to 10, 20, and 30 percent of the fin height, the heat transfer coefficients were 85, 74, and 64 percent of those for the no-clearance case. The ratio of the with-clearance and no-clearance heat transfer coefficients was a function only of the clearance-to-fin-height ratio, independent of the air flowrate, the fin height, and the fin efficiency model used to evaluate the heat transfer coefficients. The presence of clearance slowed the rate of thermal development in the entrance region.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In