Radiative Transfer With Dependent Scattering by Particles: Part 1—Theoretical Investigation

[+] Author and Article Information
J. D. Cartigny, Y. Yamada, C. L. Tien

Department of Mechanical Engineering, University of California, Berkeley, CA 94720

J. Heat Transfer 108(3), 608-613 (Aug 01, 1986) (6 pages) doi:10.1115/1.3246979 History: Received January 02, 1985; Online October 20, 2009


Dependent radiation scattering for which the independent scattering theory fails to predict the scattering properties is important in analyzing radiative transfer in packed and fluidized beds. In this paper the dependent scattering properties have been derived assuming the Rayleigh–Debye scattering approximation for two cases: two identical spheres and a cloud of spherical particles. The two-sphere calculated results compare well with the exact solutions in the literature, giving confidence in the present analytical approach. The gas model and packed-sphere model have been employed to calculate dependent scattering properties for a cloud of particles of small and large particle volume fraction, respectively. The calculated dependent scattering efficiencies for a cloud of particles are smaller than the independent scattering efficiencies and decrease with increasing particle volume fraction. A regime map for independent and dependent scattering has been constructed and compared with existing empirical criteria.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In