Second-Law-Based Thermoeconomic Optimization of Two-Phase Heat Exchangers

[+] Author and Article Information
S. M. Zubair

Copeland Corporation, Sidney, OH 45365-0669

P. V. Kadaba, R. B. Evans

The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

J. Heat Transfer 109(2), 287-294 (May 01, 1987) (8 pages) doi:10.1115/1.3248078 History: Received June 06, 1985; Online October 20, 2009


This paper presents a closed-form analytical method for the second-law-based thermoeconomic optimization of two-phase heat exchangers used as condensers or evaporators. The concept of “internal economy” as a means of estimating the economic value of entropy generated (due to finite temperature difference heat transfer and pressure drops) has been proposed, thus permitting the engineer to trade the cost of entropy generation in the heat exchanger against its capital expenditure. Results are presented in terms of the optimum heat exchanger area as a function of the exit/inlet temperature ratio of the coolant, unit cost of energy dissipated, and the optimum overall heat transfer coefficient. The total heat transfer resistance represented by (1/U = C 1 + C 2 Re−n ) in the present analysis is patterned after Wilson (1915) which accommodates the complexities associated with the determination of the two-phase heat transfer coefficient and the buildup of surface scaling resistances. The analysis of a water-cooled condenser and an air-cooled evaporator is presented with supporting numerical examples which are based on the thermoeconomic optimization procedure of this paper.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In