Boundary-Layer Treatment of Forced Convection Heat Transfer From a Semi-infinite Flat Plate Embedded in Porous Media

[+] Author and Article Information
M. Kaviany

Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI 48109

J. Heat Transfer 109(2), 345-349 (May 01, 1987) (5 pages) doi:10.1115/1.3248086 History: Received March 25, 1986; Online October 20, 2009


The effect of the presence of an isotropic solid matrix on the forced convection heat transfer rate from a flat plate is studied using the integral method. The closed-form solutions found are in good agreement with the available numerical results and also with the results obtained using a finite difference approximation and the expansion method. For large values of the flow resistance (due to the presence of the solid matrix), the asymptotic value for the heat transfer rate shows a Prandtl number dependency of 1/2 power, while the results for the intermediate values of the resistances show a 1/3 power dependency. The effect of the presence of the solid matrix on the heat transfer rate is shown through a regime diagram marking the boundaries of the regime of no significant alteration, the non-Darcian regime, and the Darcian regime.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In