Forced Convection in a Duct Partially Filled With a Porous Material

[+] Author and Article Information
D. Poulikakos, M. Kazmierczak

Department of Mechanical Engineering, University of Illinois at Chicago, Chicago, IL 60680

J. Heat Transfer 109(3), 653-662 (Aug 01, 1987) (10 pages) doi:10.1115/1.3248138 History: Received April 28, 1986; Online October 20, 2009


This paper presents a theoretical study of fully developed forced convection in a channel partially filled with a porous matrix. The matrix is attached at the channel wall and extends inward, toward the centerline. Two channel configurations are investigated, namely, parallel plates and circular pipe. For each channel configuration, both the case of constant wall heat flux and constant wall temperature were studied. The main novel feature of this study is that it takes into account the flow inside the porous region and determines the effect of this flow on the heat exchange between the wall and the fluid in the channel. The Brinkman flow model which has been proven appropriate for flows in sparsely packed porous media and for flows near solid boundaries was used to model the flow inside the porous region. Important results of engineering interest were obtained and are reported in this paper. These results thoroughly document the dependence of the Nusselt number on several parameters of the problem. Of particular importance is the finding that the dependence of Nu on the thickness of the porous layer is not monotonic. A critical thickness exists at which the value of Nu reaches a minimum.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In