Group Combustion of a Cylindrical Cloud of Char/Carbon Particles

[+] Author and Article Information
K. Annamalai, S. Ramalingam, T. Dahdah, D. Chi

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

J. Heat Transfer 110(1), 190-200 (Feb 01, 1988) (11 pages) doi:10.1115/1.3250451 History: Received November 22, 1986; Online October 20, 2009


Extensive experiments were carried out in the past in order to obtain kinetics data on the pyrolysis of coal particles and the char reactions. The literature survey distinctively reveals two kinds of studies: (i) Individual Particle Combustion (IPC) and (ii) Combustion of Particle Streams or Clouds. The experimental data obtained with particle streams are normally interpreted using IPC models with the a priori assumption that the cloud is dilute. But the term “dilute” is rarely quantified and justified considering the collective behavior of a cloud of particles. The group combustion model accounts for the reduction in burning rate due to the collective behavior of a large number of particles. While the spherical group combustion model may be employed for coal/char spray combustion modeling, the cylindrical group combustion model is more useful in interpreting the experimental data obtained with a monosized stream of particles. Hence a cylindrical group combustion model is presented here. As in the case of spherical group combustion models, there exist three modes of combustion: (i) Individual Particle Combustion (IPC), (ii) Group Combustion (GC), and (iii) Sheath Combustion (SC). Within the range of parameters studied, it appears that the cylindrical and spherical cloud combustion models yield similar results on nondimensional cloud burning rates and on the combustion modes of a cloud of particles. The results from group theory are then used to identify the mode of combustion (IPC, GC, or SC) and to interpret the experimental data.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In