Transient Response and Disturbance Growth in Vertical Buoyancy-Driven Flows

[+] Author and Article Information
B. Gebhart

Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315

J. Heat Transfer 110(4b), 1166-1174 (Nov 01, 1988) (9 pages) doi:10.1115/1.3250618 History: Received February 04, 1988; Online October 20, 2009


The basic physical characteristics of flow response to a changed bounding-surface energy input is reviewed. Response regimes are delineated in terms of locally laminar, unstable, transition, and turbulent flows and dimensionality and regimes intermediate to the others. Very large transient heat transfer effects arise. A key general question is how such regimes become unstable and progress to turbulence. Transient disturbance growth analysis is very difficult and few results are available. This paper develops a general and purely numerical formulation for two-dimensional transient response and disturbance growth. It relies on imposed random flow and associated temperature and disturbance motion pressure disturbances. It applies to any boundary region regime and is specialized here to disturbance growth in a developing buoyancy-driven flow, as an example.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In