Buoyancy-Driven Heat Transfer and Flow Between a Wetted Heat Source and an Isothermal Cube

[+] Author and Article Information
D. J. Close, M. K. Peck, R. F. White, K. J. Mahoney

Commonwealth Scientific and Industrial Research Organisation, Division of Building, Construction, and Engineering, Highett, Victoria 3190, Australia

J. Heat Transfer 113(2), 371-376 (May 01, 1991) (6 pages) doi:10.1115/1.2910571 History: Received October 03, 1989; Revised June 18, 1990; Online May 23, 2008


This paper describes flow visualization and heat transfer experiments conducted with a heat source inside an isothermal cube filled with a saturated or near-saturated gas/vapor mixture. The mixture was formed by vaporizing liquid from the surface of the heat source, and allowing it to condense on the surfaces of the cube, which was initially filled with a noncondensing gas. Visualization studies showed that for air and ethanol below 35°C, and for air and water, the flow patterns were similar with the hot plume rising from the source. For air and ethanol above 35° C the flow pattern reversed with the hot plume flowing downward. For temperatures spanning 35° C, which is the zero buoyancy temperature for the ethanol/water azeotrope and air, no distinct pattern was observed. Using water, liquid droplets fell like rain throughout the cube. Using ethanol, a fog of droplets moved with the fluid flow. Heat transfer experiments were made with water and air, and conductances between plate and cube of around 580 W·m−2 ·K−1 measured. Agreement between the similarity theory developed for saturated gas/vapor mixtures, and correlations for single component fluids only, was very good. Together with qualitative support from the visualization experiments, the theory developed in a earlier paper deriving a similarity relationship between single fluids and gas/vapor mixtures has been validated.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In