Local Heat/Mass Transfer Distributions on the Surface of a Wall-Mounted Cube

[+] Author and Article Information
M. K. Chyu, V. Natarajan

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

J. Heat Transfer 113(4), 851-857 (Nov 01, 1991) (7 pages) doi:10.1115/1.2911213 History: Received October 05, 1990; Revised February 19, 1991; Online May 23, 2008


Local mass transfer from the surface of a wall-mounted cube is studied using the naphthalene sublimation technique. The streakline pattern on each face of the cube is visualized using the oil-graphite method. A horseshoe vortex system near the endwall, in conjunction with the separated shear layers initiated at sharp edges, determines the transport characteristics around the cube. As a direct influence of the flow field, the local mass transfer distributions reflect features of three-dimensional flow separation that are significantly different from their two-dimensional counterparts existing in the midsection of a long prism. According to several previous studies, average mass transfer over the rear surface of a square prism without end effects is the highest among all surfaces. However, it is the lowest for the present case with a wall-mounted cube. The cube side wall has the highest average mass transfer overall. This is a result of the elevated local mass transfer existing in the lower portion of the surface, near which a horseshoe vortex system prevails. In addition to local data, correlations of average Sherwood number with Reynolds number are also presented for various surfaces.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In