Natural Convection in Vertically Vented Enclosures

[+] Author and Article Information
D. M. Sefcik, B. W. Webb, H. S. Heaton

Heat Transfer Laboratory, Brigham Young University, Provo, UT 84602

J. Heat Transfer 113(4), 912-918 (Nov 01, 1991) (7 pages) doi:10.1115/1.2911221 History: Received August 24, 1990; Revised June 21, 1991; Online May 23, 2008


Steady, laminar natural convection in vertically vented two-dimensional enclosures has been investigated both experimentally and analytically. A vertically vented enclosure is one in which the buoyancy-driven flow and heat transfer are restricted by vents in the top and bottom bounding walls of the enclosure. The local heat transfer along the heated wall was determined using Mach-Zehnder interferometry, and the flow structure was determined using a smoke generation flow visualization technique. Analytically, the governing conservation equations were solved numerically using a control volume-based finite difference technique. The results reveal strongly nonuniform local heat transfer along the isothermal wall as a result of the blockage at the inlet. A local maximum and minimum occur in the lower half of the enclosure. The flow visualization and analytical predictions for the flow field reveal that these heat transfer extrema are attributed to separated flow effects near the inlet gap with the associated primary inlet flow impingement and bifurcation at the heated wall. The analysis predicts well the flow structure and local and average heat transfer data. The results show asymptotic behavior to the classical vertical parallel plate result in the limit as the vent gap approaches the enclosure width.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In