Nucleate Boiling Characteristics of R-113 in a Small Tube Bundle

[+] Author and Article Information
P. J. Marto, C. L. Anderson

Department of Mechanical Engineering, Naval Postgraduate School, Monterey, CA 93943

J. Heat Transfer 114(2), 425-433 (May 01, 1992) (9 pages) doi:10.1115/1.2911291 History: Received December 01, 1990; Revised October 01, 1991; Online May 23, 2008


Heat transfer measurements were made during nucleate boiling of R-113 from a bundle of 15 electrically heated, smooth copper tubes arranged in an equilateral triangular pitch. The bundle was designed to simulate a portion of a refrigeration system flooded-tube evaporator. The outside diameter of the tubes was 15.9 mm, and the tube pitch was 19.1 mm. Five of the tubes that were oriented in a vertical array on the centerline of the bundle were each instrumented with six wall thermocouples to obtain an average wall temperature and a resultant average heat transfer coefficient. All tests were performed at atmospheric pressure. The majority of the data were obtained with increasing heat flux to study the onset of nucleate boiling and the influence of surface “history” upon boiling heat transfer. Data taken during increasing heat flux showed that incipient boiling was dependent upon the number of tubes in operation. The operation of lower tubes in the bundle decreased the incipient boiling heat flux and wall superheat of the upper tubes, and generally increased the boiling heat transfer coefficients of the upper tubes at low heat fluxes where natural convection effects are important. The boiling data confirmed that the average heat transfer coefficient for a smooth-tube bundle is larger than obtained for a single tube.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In