Three-Dimensional Natural Convection in a Vertical Porous Layer With a Hexagonal Honeycomb Core

[+] Author and Article Information
Y. Asako, H. Nakamura, Y. Yamaguchi

Department of Mechanical Engineering, Tokyo Metropolitan University, Tokyo, 192-03 Japan

M. Faghri

Department of Mechanical Engineering, University of Rhode Island, Kingston, RI 02881

J. Heat Transfer 114(4), 924-927 (Nov 01, 1992) (4 pages) doi:10.1115/1.2911902 History: Received September 01, 1991; Revised April 01, 1992; Online May 23, 2008


Numerical solutions are obtained for a three-dimensional natural convection heat transfer problem in a vertical porous layer with a hexagonal honeycomb core. The porous layer is assumed to be long and wide such that the velocity and temperature fields repeat themselves in successive enclosures. The natural convection problem is solved for only one honeycomb enclosure with periodic thermal boundary conditions. The porous layer is assumed to be homogeneous and isotropic and the flow is obtained by using the Darcian model. The numerical methodology is based on an algebraic coordinate transformation technique, which maps the hexagonal cross section onto a rectangle. The transformed governing equations are solved with the SIMPLE algorithm. The calculations are performed for the Darcy–Rayleigh number in the range of 10 to 103 and for eight values of the aspect ratio (H/L = 0.25, 0.333, 0.5, 0.7, 1, 1.4, 2, and 5). Two types of thermal boundary condition for the honeycomb core wall are considered: conduction and adiabatic honeycomb core wall thermal boundary conditions. The results are presented in the form of average and local heat transfer coefficients and are compared with the corresponding values for two and three-dimensional rectangular enclosures.

Copyright © 1992 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In