RESEARCH PAPERS: Liquid Jet Impingement

Convective Heat Transfer Enhancement Due to Intermittency in an Impinging Jet

[+] Author and Article Information
D. A. Zumbrunnen, M. Aziz

Thermal Sciences Research Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921

J. Heat Transfer 115(1), 91-98 (Feb 01, 1993) (8 pages) doi:10.1115/1.2910675 History: Received March 30, 1992; Revised July 07, 1992; Online May 23, 2008


An experimental investigation has been performed to study the effect of flow intermittency on convective heat transfer to a planar water jet impinging on a constant heat flux surface. Enhanced heat transfer was achieved by periodically restarting an impinging flow and thereby forcing renewal of the hydrodynamic and thermal boundary layers. Although convective heat transfer was less effective during a short period when flow was interrupted, high heat transfer rates, which immediately follow initial wetting, prevailed above a threshold frequency, and a net enhancement occurred. Experiments with intermittent flows yielded enhancements in convective heat transfer coefficients of nearly a factor of two, and theoretical considerations suggest that higher enhancements can be achieved by increasing the frequency of the intermittency. Enhancements need not result in an increased pressure drop within a flow system, since flow interruptions can be induced beyond a nozzle exit. Experimental results are presented for both the steady and intermittent impinging jets at distances up to seven jet widths from the stagnation line. A theoretical model of the transient boundary layer response is used to reveal parameters that govern the measured enhancements. A useful correlation is also provided of local heat transfer results for steadily impinging jets.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In