RESEARCH PAPERS: Forced Convection

Wall Roughness Effects on Stagnation-Point Heat Transfer Beneath an Impinging Liquid Jet

[+] Author and Article Information
L. A. Gabour, J. H. Lienhard

W. M. R. Heat and Mass Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

J. Heat Transfer 116(1), 81-87 (Feb 01, 1994) (7 pages) doi:10.1115/1.2910887 History: Received April 01, 1993; Revised August 01, 1993; Online May 23, 2008


Jet impingement cooling applications often involve rough surfaces, yet few studies have examined the role of wall roughness. Surface protrusions can pierce the thermal sublayer in the stagnation region and increase the heat transfer. In this paper, the effect of surface roughness on the stagnation-point heat transfer of an impinging unsubmerged liquid jet is investigated. Experiments were performed in which a fully developed turbulent water jet struck a uniformly heated rough surface. Heat transfer measurements were made for jets of diameters 4.4–9.0 mm over a Reynolds number range of 20,000–84,000. The Prandtl number was held nearly constant at 8.2–9.1. Results are presented for nine well-characterized rough surfaces with root-mean-square average roughness heights ranging from 4.7 to 28.2 μm. Measured values of the local Nusselt number for the rough plates are compared with those for a smooth wall, and increases of as much as 50 percent are observed. Heat transfer in the stagnation zone is scaled with Reynolds number and a roughness parameter. For a given roughness height and jet diameter, the minimum Reynolds number required to increase heat transfer above that of a smooth plate is established. A correlation for smooth wall heat transfer is also given.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In