RESEARCH PAPERS: Radiative Transfer

Characteristics of Radiation Absorption in Metallic Particles

[+] Author and Article Information
T. Q. Qiu, J. P. Longtin, C. L. Tien

Department of Mechanical Engineering, University of California, Berkeley, CA 94720

J. Heat Transfer 117(2), 340-345 (May 01, 1995) (6 pages) doi:10.1115/1.2822527 History: Received September 01, 1993; Revised May 01, 1994; Online December 05, 2007


Thermal radiation absorption in metallic particles is an important phenomenon in many contemporary laser-processing techniques, including laser cladding of coating materials and laser cleaning of particulate contaminations. In this work, the Drude free-electron theory and electromagnetic wave theory are utilized to characterize the internal absorption of CO2 laser radiation in aluminum, chromium, and nickel particles. The results show that metallic particles have unique radiation properties. Radiation absorption in large particles occurs only in a very narrow region of the front particle surface, which results in inefficient radiation absorption. On the other hand, micron and submicron particles can absorb radiation very efficiently, due to the strong diffraction effect at the particle surface. For extremely small particles (e.g., nanometer particles), radiation absorption becomes less efficient. The particle absorption efficiency is found to increase with temperature, and this temperature dependence can be determined from those of flat metal surfaces at the normal incidence.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In